Lower bound for the diameter of planar Brownian motion

被引:0
|
作者
Jovalekic, Milica [1 ]
机构
[1] Univ Belgrade, Sch Elect Engn, Bulevar Kralja Aleksandra 73, Belgrade 11120, Serbia
来源
BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE | 2021年 / 64卷 / 03期
关键词
Brownian motion; diameter; distribution; expectation;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let B(t) be a standard planar Brownian motion and r(theta) be the diameter of the projection of B(Left perpendicular 0, 1 Right perpendicular) on the line generated by the unit vector e(theta) = (cos theta; sin theta), where 0 <= theta <= pi. In this short note, we find the common cumulative distribution function F of the random variables r(theta). Namely, we prove that F(x) = 8 Sigma(infinity)(n=1)(1/x(2) + 1/(2n - 1)(2)pi(2)) exp (-(2n - 1)(2)pi(2)/2x(2)), for every x > 0. As immediate consequence, lower bound for the expected diameter of the set B([0, 1]), better than known, is obtained. Namely, it is known that Ed >= 1.601, where d is the diameter of the set B([0, 1]). In this note we show Ed >= 1:856.
引用
收藏
页码:281 / 284
页数:4
相关论文
共 50 条
  • [41] Occupation times for planar and higher dimensional Brownian motion
    Desbois, Jean
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (10) : 2251 - 2262
  • [42] OBLIQUELY REFLECTED BROWNIAN MOTION IN NONSMOOTH PLANAR DOMAINS
    Burdzy, Krzysztof
    Chen, Zhen-Qing
    Marshall, Donald
    Ramanan, Kavita
    ANNALS OF PROBABILITY, 2017, 45 (05): : 2971 - 3037
  • [43] ON STOCHASTIC AREAS AND AVERAGES OF PLANAR BROWNIAN-MOTION
    YOR, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (15): : 3049 - 3057
  • [44] Holonomy of the Planar Brownian Motion in a Poisson Punctured Plane
    Sauzedde, Isao
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2024, 405 (06)
  • [45] FURTHER ASYMPTOTIC LAWS OF PLANAR BROWNIAN-MOTION
    PITMAN, J
    YOR, M
    ANNALS OF PROBABILITY, 1989, 17 (03): : 965 - 1011
  • [46] PLANAR BROWNIAN-MOTION, CONES AND STABLE PROCESSES
    LEGALL, JF
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1986, 302 (17): : 641 - 643
  • [47] HARMONICALLY BOUND BROWNIAN-MOTION IN FLOWING FLUIDS
    VANDENBROECK, C
    SANCHO, JM
    MIGUEL, MS
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1982, 116 (03) : 448 - 461
  • [48] Brownian motion of a polymer-bound colloidal particle
    Nowicki, W
    Nowicka, G
    COLLOID AND POLYMER SCIENCE, 1999, 277 (05) : 469 - 473
  • [49] Brownian motion of a polymer-bound colloidal particle
    W. Nowicki
    G. Nowicka
    Colloid and Polymer Science, 1999, 277 : 469 - 473
  • [50] A Tight Lower Bound for Planar Steiner Orientation
    Chitnis, Rajesh
    Feldmann, Andreas Emil
    Suchy, Ondrej
    ALGORITHMICA, 2019, 81 (08) : 3200 - 3216