Pattern Recognition Techniques for Boson Sampling Validation

被引:55
作者
Agresti, Iris [1 ]
Viggianiello, Niko [1 ]
Flamini, Fulvio [1 ]
Spagnolo, Nicolo [1 ]
Crespi, Andrea [2 ,3 ]
Osellame, Roberto [2 ,3 ]
Wiebe, Nathan [4 ]
Sciarrino, Fabio [1 ]
机构
[1] Sapienza Univ Roma, Dipartimento Fis, Piazzale Aldo Moro 5, I-00185 Rome, Italy
[2] CNR, IFN, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
[3] Politecn Milan, Dipartimento Fis, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
[4] Microsoft Res, Stn Q Quantum Architectures & Computat Grp, Redmond, WA 98052 USA
基金
欧洲研究理事会; 欧盟地平线“2020”;
关键词
Computational Physics; Photonics; Quantum Information; CERTIFICATION; EFFICIENCY; COMPLEXITY;
D O I
10.1103/PhysRevX.9.011013
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The difficulty of validating large-scale quantum devices, such as boson samplers, poses a major challenge for any research program that aims to show quantum advantages over classical hardware. Towards this aim, we propose a novel data-driven approach, wherein models are trained to identify common pathologies using unsupervised machine-learning methods. We illustrate this idea by training a classifier that exploits K-means clustering to distinguish between boson samplers that use indistinguishable photons from those that do not. We tune the model on numerical simulations of small-scale boson samplers and then validate the pattern-recognition technique on larger numerical simulations as well as on photonic chips in both traditional boson-sampling and scatter-shot experiments. The effectiveness of such a method relies on particle-type-dependent internal correlations present in the output distributions. This approach performs substantially better on the test data than previous methods and underscores the ability to further generalize its operation beyond the scope of the examples that it was trained on.
引用
收藏
页数:14
相关论文
共 59 条
[1]   BosonSampling with lost photons [J].
Aaronson, Scott ;
Brod, Daniel J. .
PHYSICAL REVIEW A, 2016, 93 (01)
[2]  
Aaronson S, 2014, QUANTUM INF COMPUT, V14, P1383
[3]  
Aaronson S, 2011, ACM S THEORY COMPUT, P333
[4]   Reliable quantum certification of photonic state preparations [J].
Aolita, Leandro ;
Gogolin, Christian ;
Kliesch, Martin ;
Eisert, Jens .
NATURE COMMUNICATIONS, 2015, 6
[5]   Is my boson sampler working? [J].
Bentivegna, Marco ;
Spagnolo, Nicolo ;
Sciarrino, Fabio .
NEW JOURNAL OF PHYSICS, 2016, 18
[6]   Experimental scattershot boson sampling [J].
Bentivegna, Marco ;
Spagnolo, Nicolo ;
Vitelli, Chiara ;
Flamini, Fulvio ;
Viggianiello, Niko ;
Latmiral, Ludovico ;
Mataloni, Paolo ;
Brod, Daniel J. ;
Galvao, Ernesto F. ;
Crespi, Andrea ;
Ramponi, Roberta ;
Osellame, Roberto ;
Sciarrino, Fabio .
SCIENCE ADVANCES, 2015, 1 (03)
[7]   Bayesian approach to Boson sampling validation [J].
Bentivegna, Marco ;
Spagnolo, Nicolo ;
Vitelli, Chiara ;
Brod, Daniel J. ;
Crespi, Andrea ;
Flamini, Fulvio ;
Ramponi, Roberta ;
Mataloni, Paolo ;
Osellame, Roberto ;
Galvao, Ernesto F. ;
Sciarrino, Fabio .
INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2014, 12 (7-8)
[8]   Architectures for Quantum Simulation Showing a Quantum Speedup [J].
Bermejo-Vega, Juan ;
Hangleiter, Dominik ;
Schwarz, Martin ;
Raussendorf, Robert ;
Eisert, Jens .
PHYSICAL REVIEW X, 2018, 8 (02)
[9]  
Biamonte J., 2015, NATURE, V549, P195
[10]  
Bishop C. M., 2006, PATTERN RECOGNITION, DOI DOI 10.1117/1.2819119