Visual Tracking based on Cooperative model

被引:0
作者
Zhang Bobin [1 ]
Fang Weidong [2 ]
Chen Wei [1 ,2 ]
Bi Fangming [1 ]
Tang Chaogang [1 ]
Huang Xiaohua [3 ,4 ]
机构
[1] China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Jiangsu, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, Key Lab Wireless Sensor Network & Commun, Shanghai 201899, Peoples R China
[3] Univ Oulu, Ctr Machine Vis & Signal Anal CMVS, FI-90540 Oulu, Finland
[4] Univ Oulu, Faulty Informat Technol & Elect Engn ITEE, FI-90540 Oulu, Finland
来源
PROCEEDINGS 2018 13TH IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC FACE & GESTURE RECOGNITION (FG 2018) | 2018年
基金
中国博士后科学基金;
关键词
Visual tracking; AdaBoost classifier; sparse representation; collaborative model;
D O I
10.1109/FG.2018.00097
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a cooperative model combined the multi-task reverse sparse representation model (MTRSR) and the AdaBoost classifier, which were used to cope with the disturbing of target gradient information caused by motion blur or target serious occlusion, and a descriptive dictionary were used to estimate the weights of each candidates. First, we use the MTRSR model to get the blur kernel which were used to get the blur target template set, meanwhile the confidence of the candidates is also obtained by the reconstruction error. Then we use the HOG features of the target templates to get the descriptive dictionary to calculate the weights of the candidates, and a AdaBoost classifier is used to calculate the confidences of all candidates. Finally, the best target is retrieved by the sum of production of weight value and the two confidences. The experimental data show that the proposed algorithm can fully cope with the target's information change which were caused by motion blur and target occlusion in the complex scene, and our algorithm can further improve the accuracy and robustness in visual tracking.
引用
收藏
页码:614 / 620
页数:7
相关论文
共 20 条
[1]  
Bao CL, 2012, PROC CVPR IEEE, P1830, DOI 10.1109/CVPR.2012.6247881
[2]   Accelerated Gradient Method for Multi-Task Sparse Learning Problem [J].
Chen, Xi ;
Pan, Weike ;
Kwok, James T. ;
Carbonell, Jaime G. .
2009 9TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, 2009, :746-+
[3]   Dual Deep Network for Visual Tracking [J].
Chi, Zhizhen ;
Li, Hongyang ;
Lu, Huchuan ;
Yang, Ming-Hsuan .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (04) :2005-2015
[4]   Deep Relative Tracking [J].
Gao, Junyu ;
Zhang, Tianzhu ;
Yang, Xiaoshan ;
Xu, Changsheng .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (04) :1845-1858
[5]   Visual Tracking Under Motion Blur [J].
Ma, Bo ;
Huang, Lianghua ;
Shen, Jianbing ;
Shao, Ling ;
Yang, Ming-Hsuan ;
Porikli, Fatih .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (12) :5867-5876
[6]   Visual Tracking Using Strong Classifier and Structural Local Sparse Descriptors [J].
Ma, Bo ;
Shen, Jianbing ;
Liu, Yangbiao ;
Hu, Hongwei ;
Shao, Ling ;
Li, Xuelong .
IEEE TRANSACTIONS ON MULTIMEDIA, 2015, 17 (10) :1818-1828
[7]   CREST: Convolutional Residual Learning for Visual Tracking [J].
Song, Yibing ;
Ma, Chao ;
Gong, Lijun ;
Zhang, Jiawei ;
Lau, Rynson W. H. ;
Yang, Ming-Hsuan .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :2574-2583
[8]  
Sun C., 2017, IEEE T CIRCUITS SYST, V27, P2576
[9]  
Wang D., 2013, IEEE C COMP VIS PATT
[10]   Visual Tracking via Weighted Local Cosine Similarity [J].
Wang, Dong ;
Lu, Huchuan ;
Bo, Chunjuan .
IEEE TRANSACTIONS ON CYBERNETICS, 2015, 45 (09) :1838-1850