VOLUME INTEGRAL MEANS OF HOLOMORPHIC FUNCTIONS

被引:30
作者
Xiao, Jie [1 ]
Zhu, Kehe [2 ]
机构
[1] Mem Univ Newfoundland, Dept Math & Stat, St John, NF A1C 5S7, Canada
[2] SUNY Albany, Dept Math & Stat, Albany, NY 12222 USA
基金
加拿大自然科学与工程研究理事会;
关键词
Volume/area integral means; monotonicity; logarithmic convexity; Bergman/Hardy spaces; isoperimetric-type inequalities; weighted Ricci curvatures; STRICTLY PSEUDOCONVEX DOMAINS; INEQUALITIES; AREA;
D O I
10.1090/S0002-9939-2010-10797-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The classical integral means of a holomorphic function f in the unit disk are defined by [1/2 pi integral(2 pi)(0) vertical bar f(re(i theta))vertical bar(p) d theta](1/p), 0 <= r < 1. These integral mea is play an important role in modern complex analysis. In this note we consider integral means of holomorphic functions in the unit ball B-n in C-n with respect to weighted volume measures, M-p,M-alpha(f, r) = [1/v(alpha)(rB(n)) integral(rBn) vertical bar f(z)vertical bar(p) dv(alpha)(z)](1/p), 0 <= r < 1, where alpha is real, dv(alpha)(z) = (1 - vertical bar z vertical bar(2))(alpha) dv(z), and dv is volume measure on B-n. We show that M-p,M-alpha(f, r) increases with r strictly unless f is a constant, but in contrast with the classical case, log M-p,M-alpha(f, r) is not always convex in log r. As an application, we show that if alpha <= -1, M-p,M-alpha(f, r) is bounded in r if and only if f belongs to the Hardy space H-P, while if a > -1, M-p,M-alpha(f, r) is bounded in r if and only if f is in the weighted Bergman space A(alpha)(p).
引用
收藏
页码:1455 / 1465
页数:11
相关论文
共 23 条
[1]  
[Anonymous], MATH MAGAZINE
[2]  
[Anonymous], SERIES MODERN SURVEY
[3]  
[Anonymous], 1992, GRUNDLEHREN MATH WIS
[4]  
[Anonymous], LECT NOTES MATH
[5]  
[Anonymous], COMMUNICATION
[6]   Area inequality and Qp norm [J].
Aulaskari, R ;
Chen, HH .
JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 221 (01) :1-24
[7]   STRICTLY PSEUDO-CONVEX DOMAINS IN CN [J].
BEALS, M ;
FEFFERMAN, C ;
GROSSMAN, R .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 8 (02) :125-322
[8]   SHARP INEQUALITIES FOR HOLOMORPHIC-FUNCTIONS [J].
BURBEA, J .
ILLINOIS JOURNAL OF MATHEMATICS, 1987, 31 (02) :248-264
[9]   AREA, CAPACITY AND DIAMETER VERSIONS OF SCHWARZ'S LEMMA [J].
Burckel, Robert B. ;
Marshall, Donald E. ;
Minda, David ;
Poggi-Corradini, Pietro ;
Ransford, Thomas J. .
CONFORMAL GEOMETRY AND DYNAMICS, 2008, 12 :133-152
[10]   On theory of minimal areas. [J].
Carleman, T .
MATHEMATISCHE ZEITSCHRIFT, 1921, 9 :154-159