机构:
Univ Chicago, Harris Sch Publ Policy, 1155 E 60th St, Chicago, IL 60637 USA
NBER, Cambridge, MA 02138 USAUniv Chicago, Harris Sch Publ Policy, 1155 E 60th St, Chicago, IL 60637 USA
Meyer, Bruce D.
[1
,2
]
Mittag, Nikolas
论文数: 0引用数: 0
h-index: 0
机构:
CERGE EI, Politickych Veznu 7, Prague 11121 1, Czech RepublicUniv Chicago, Harris Sch Publ Policy, 1155 E 60th St, Chicago, IL 60637 USA
Mittag, Nikolas
[3
]
机构:
[1] Univ Chicago, Harris Sch Publ Policy, 1155 E 60th St, Chicago, IL 60637 USA
Bias from misclassification of binary dependent variables can be pronounced. We examine what can be learned from such contaminated data. First, we derive the asymptotic bias in parametric models allowing misclassification to be correlated with observables and unobservables. Simulations and validation data show that the bias formulas are accurate in finite samples and in most situations imply attenuation. Second, we examine the bias in a prototypical application. Erroneously restricting the covariance of misclassification and covariates aggravates the bias for all estimators we examine. Estimators that relax this restriction perform well if a model of misclassification or validation data is available. (C) 2017 The Authors. Published by Elsevier B.V.
引用
收藏
页码:295 / 311
页数:17
相关论文
共 38 条
[1]
Aigner D.J., 1973, J ECONOMETRICS, V1, P49, DOI [10.1016/0304-4076(73)90005-5, DOI 10.1016/0304-4076(73)90005-5]