Molten salt-assisted processing of nanoparticle-reinforced Cu

被引:12
作者
Cao, Chezheng [1 ,2 ]
Yao, Gongcheng [1 ,2 ]
Sokoluk, Maximilian [2 ]
Li, Xiaochun [1 ,2 ]
机构
[1] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Mech & Aerosp Engn, Los Angeles, CA 90095 USA
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2020年 / 785卷
基金
美国国家科学基金会;
关键词
Cu matrix nanocomposites; Molten salt; WC nanoparticles; HIGH ELECTRICAL-CONDUCTIVITY; ULTRAHIGH STRENGTH; BI ALLOY; NANOCOMPOSITES; MATRIX; NBC;
D O I
10.1016/j.msea.2020.139345
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
There is a significant demand for Cu-based materials with high strength and high electrical conductivity for a wide range of applications. However, the long-standing trade-off between mechanical properties and electrical conductivity often inhibits the development of such high-performance Cu materials. Cu-based metal matrix nanocomposites (MMNCs) are promising to mitigate this trade-off, but it is extremely difficult to fabricate bulk MMNCs with a uniform nanoparticle dispersion through an economical approach. In this study, a novel molten salt-assisted incorporation method was developed to fabricate bulk Cu-based nanocomposites with uniformly dispersed WC nanoparticles. The mechanical properties, including hardness, strength and Young's modulus, were significantly enhanced without a great sacrifice in electrical conductivity. Furthermore, various salts, including KAlF4, borax, and NaCl, were found effective to incorporate WC nanoparticles into molten Cu. This molten salt-assisted incorporation method paves a pathway for the scalable manufacturing of bulk Cu-based MMNCs with excellent mechanical properties and good electrical conductivity for widespread applications.
引用
收藏
页数:10
相关论文
共 36 条
[1]   Effect of different solute diffusivities on precipitate coarsening in ternary alloys [J].
Bhaskar, M. S. ;
Abinandanan, T. A. .
COMPUTATIONAL MATERIALS SCIENCE, 2018, 146 :73-83
[2]   Bulk ultrafine grained/nanocrystalline metals via slow cooling [J].
Cao, Chezheng ;
Yao, Gongcheng ;
Jiang, Lin ;
Sokoluk, Maximilian ;
Wang, Xin ;
Ciston, Jim ;
Javadi, Abdolreza ;
Guan, Zeyi ;
De Rosa, Igor ;
Xie, Weiguo ;
Lavernia, Enrique J. ;
Schoenung, Julie M. ;
Li, Xiaochun .
SCIENCE ADVANCES, 2019, 5 (08)
[3]   Scalable manufacturing of immiscible Al-Bi alloy by self-assembled nanoparticles [J].
Cao, Chezheng ;
Liu, Weiqing ;
Liu, Zhiwei ;
Xu, Jiaquan ;
Hwang, Injoo ;
De Rosa, Igor ;
Li, Xiaochun .
MATERIALS & DESIGN, 2018, 146 :163-171
[4]   Phase control in immiscible Zn-Bi alloy by tungsten nanoparticles [J].
Cao, Chezheng ;
Chen, Lianyi ;
Xu, Jiaquan ;
Zhao, Jingzhou ;
Pozuelo, Marta ;
Li, Xiaochun .
MATERIALS LETTERS, 2016, 174 :213-216
[5]   Extraordinary strengthening effect of carbon nanotubes in metal-matrix nanocomposites processed by molecular-level mixing [J].
Cha, SI ;
Kim, KT ;
Arshad, SN ;
Mo, CB ;
Hong, SH .
ADVANCED MATERIALS, 2005, 17 (11) :1377-+
[6]   Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles [J].
Chen, Lian-Yi ;
Xu, Jia-Quan ;
Choi, Hongseok ;
Pozuelo, Marta ;
Ma, Xiaolong ;
Bhowmick, Sanjit ;
Yang, Jenn-Ming ;
Mathaudhu, Suveen ;
Li, Xiao-Chun .
NATURE, 2015, 528 (7583) :539-+
[7]   Precipitation, Recrystallization, and Evolution of Annealing Twins in a Cu-Cr-Zr Alloy [J].
Chen, Xiaobo ;
Jiang, Feng ;
Jiang, Jingyu ;
Xu, Pian ;
Tong, Mengmeng ;
Tang, Zhongqin .
METALS, 2018, 8 (04)
[8]   Extreme creep resistance in a microstructurally stable nanocrystalline alloy [J].
Darling, K. A. ;
Rajagopalan, M. ;
Komarasamy, M. ;
Bhatia, M. A. ;
Hornbuckle, B. C. ;
Mishra, R. S. ;
Solanki, K. N. .
NATURE, 2016, 537 (7620) :378-+
[9]  
Eustathopoulos N., 1999, PERG MAT SER, V3, P202
[10]  
Girish B M., 2012, Int. J. Compos. Mater, V2, P37, DOI [10.5923/j.cmaterials.20120203.04, DOI 10.5923/J.CMATERIALS.20120203.04]