Experimental Study on Enhanced Oil Recovery by Low Salinity Water Flooding on the Fractured Dolomite Reservoir

被引:2
作者
Rajaee, Ebrahimzadeh Shima [1 ]
Gerami, Shahab [1 ,4 ]
Safekordi, Ali Akbar [2 ]
Bahramian, Ali Reza [3 ]
Ghazvini, Ganjeh Mostafa [4 ]
机构
[1] Islamic Azad Univ, Fac Petr & Chem Engn, Sci & Res Branch, Tehran, Iran
[2] Sharif Univ Technol, Chem & Petr Engn Dept, Tehran, Iran
[3] Univ Calgary, Chem Engn Fac, Calgary, AB T2N 1N4, Canada
[4] NIOC, IOR Res Inst, Tehran, Iran
来源
IRANIAN JOURNAL OF CHEMISTRY & CHEMICAL ENGINEERING-INTERNATIONAL ENGLISH EDITION | 2021年 / 40卷 / 05期
关键词
Low salinity; Naturally fractured dolomite reservoir; Wettability alteration; Spontaneous imbibition; Mineral dissolution; pH increase; WETTABILITY ALTERATION; SPONTANEOUS IMBIBITION; EOR;
D O I
10.30492/IJCCE.2020.39961
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Enhanced Oil Recovery from carbonate reservoirs is a major challenge especially in naturally fractured formations where spontaneous imbibition is a main driving force. The Low Salinity Water Injection (LSWI) method has been suggested as one of the promising methods for enhanced oil recovery. However, the literature suggests that LSWI method, due to high dependence on rock mineralogy, injected and formation water salt concentration, and complexity of reactions is not a well-established technology in oil recovery from carbonate reservoirs. The underlying mechanism of LSWI is still not fully understood. Due to lack of LSWI study in free clay dolomite fractured reservoir, and to investigate of anhydrate composition effect on oil recovery in this type of reservoir, the main purpose is the experimental evaluation of oil recovery from one of the Iranian naturally fractured carbonated (dolomite containing anhydrate and free clay) reservoirs using LSWI. For this purpose, a set of experiments including spontaneous and forced imbibition is conducted. To obtain the optimum salt concentration for oil recovery, the secondary mode of the spontaneous imbibition tests is performed by seawater in various salt concentrations at the reservoir temperature (75 degrees C). Also, the tertiary recovery mode is subsequently applied with optimum brine salinity. The lab results reveal that by decreasing the injected water salt concentration, oil production increases. Furthermore, in order to upscale the experimental results to the field scale, a more precise dimensionless-time correlation is used. Due to some inconsistencies over the influence of mechanisms on LSWI oil recovery, the mineral dissolution, pH-increase mechanisms, and wettability alteration are also studied. The results indicate that wettability alteration is the main mechanism and mineral dissolution may be the predominant mechanism of the improved oil recovery in the studied reservoir. It is noticed, the elevation of pH led to enhanced oil recovery when high dilution of low salinity water is implemented.
引用
收藏
页码:1703 / 1719
页数:17
相关论文
共 50 条
  • [31] Impact of rock morphology on the dominating enhanced oil recovery mechanisms by low salinity water flooding in carbonate rocks
    Farhadi, Hamed
    Ayatollahi, Shahab
    Fatemi, Mobeen
    FUEL, 2022, 324
  • [32] Isolating the effect of asphaltene content on enhanced oil recovery during low salinity water flooding of carbonate reservoirs
    Norouzpour, Milad
    Nabipour, Moein
    Azdarpour, Amin
    Santos, Rafael M.
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2025, 47 (01) : 3270 - 3283
  • [33] Effect of Electrokinetics and Thermodynamic Equilibrium on Low-Salinity Water Flooding for Enhanced Oil Recovery in Sandstone Reservoirs
    Elakneswaran, Yogarajah
    Ubaidah, Amir
    Takeya, Miku
    Shimokawara, Mai
    Okano, Hirofumi
    ACS OMEGA, 2021, 6 (05): : 3727 - 3735
  • [34] Oil Recovery by Low Salinity Water Injection into a Reservoir: A New Study of Tertiary Oil Recovery Mechanism
    Y. Li
    Transport in Porous Media, 2011, 90 : 333 - 362
  • [35] Oil Recovery by Low Salinity Water Injection into a Reservoir: A New Study of Tertiary Oil Recovery Mechanism
    Li, Y.
    TRANSPORT IN POROUS MEDIA, 2011, 90 (02) : 333 - 362
  • [36] The role of salinity and aging time on carbonate reservoir in low salinity seawater and smart seawater flooding
    Rahimi, Ali
    Honarvar, Bizhan
    Safari, Mehdi
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2020, 187
  • [37] Effect of Salinity on Hydroxyapatite Nanoparticles Flooding in Enhanced Oil Recovery: A Mechanistic Study
    Ngouangna, Eugene N.
    Jaafar, Mohd Zaidi
    Norddin, Mnam
    Agi, Augustine
    Yakasai, Faruk
    Oseh, Jeffrey O.
    Mamah, Stanley C.
    Yahya, Muftahu N.
    Al-Ani, Muhanad
    ACS OMEGA, 2023, 8 (20): : 17819 - 17833
  • [38] Effect of SO4-2 ion exchanges and initial water saturation on low salinity water flooding (LSWF) in the dolomite reservoir rocks
    Safavi, Mir Saeid
    Masihi, Mohsen
    Safekordi, Ali Akbar
    Ayatollahi, Shahab
    Sadeghnejad, Saeid
    JOURNAL OF DISPERSION SCIENCE AND TECHNOLOGY, 2020, 41 (06) : 841 - 855
  • [39] Impact of salinity and connate water on low salinity water injection in secondary and tertiary stages for enhanced oil recovery in carbonate oil reservoirs
    Mohammadkhani, Samira
    Shahverdi, Hamidreza
    Esfahany, Mohsen Nasr
    JOURNAL OF GEOPHYSICS AND ENGINEERING, 2018, 15 (04) : 1242 - 1254
  • [40] Nanofluids of silica nanoparticles in low salinity water with surfactant and polymer (SMART LowSal) for enhanced oil recovery
    Behera, Uma Sankar
    Sangwai, Jitendra S.
    JOURNAL OF MOLECULAR LIQUIDS, 2021, 342