Analytical approximation and numerical simulations for periodic travelling water waves

被引:7
作者
Kalimeris, Konstantinos [1 ]
机构
[1] Austrian Acad Sci, Johann Radon Inst Computat & Appl Math, A-4040 Linz, Austria
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2018年 / 376卷 / 2111期
基金
奥地利科学基金会;
关键词
travelling water waves; vorticity; asymptotic expansions; numerical continuation; DISPERSION-RELATIONS; STEADY; PRESSURE; DEPTH; FLOWS; VORTICITY; RECOVERY; BENEATH; TRAJECTORIES; PROFILES;
D O I
10.1098/rsta.2017.0093
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We present recent analytical and numerical results for two-dimensional periodic travelling water waves with constant vorticity. The analytical approach is based on novel asymptotic expansions. We obtain numerical results in two different ways: the first is based on the solution of a constrained optimization problem, and the second is realized as a numerical continuation algorithm. Both methods are applied on some examples of non-constant vorticity. This article is part of the theme issue 'Nonlinear water waves'.
引用
收藏
页数:19
相关论文
共 55 条
[21]   Pressure Beneath a Stokes Wave [J].
Constantin, Adrian ;
Strauss, Walter .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2010, 63 (04) :533-557
[22]   The origins of water wave theory [J].
Craik, ADD .
ANNUAL REVIEW OF FLUID MECHANICS, 2004, 36 :1-28
[23]   STEEP, STEADY SURFACE-WAVES ON WATER OF FINITE DEPTH WITH CONSTANT VORTICITY [J].
DASILVA, AFT ;
PEREGRINE, DH .
JOURNAL OF FLUID MECHANICS, 1988, 195 :281-302
[24]  
Doedel E.J., 2007, Numerical Continuation Methods for dynamical systems, P1
[25]  
Dubreil-Jacotin M.-L., 1934, J. Math. Pures Appl., V13, P217
[26]   Analyticity of Rotational Water Waves [J].
Escher, Joachim ;
Matioc, Bogdan-Vasile .
ELLIPTIC AND PARABOLIC EQUATIONS, 2015, 119 :111-137
[27]  
Gerstner F, 1809, Ann. Phys., V32, P412, DOI DOI 10.1002/ANDP.18090320808
[30]   Pressure in a Deep-Water Stokes Wave [J].
Henry, David .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2011, 13 (02) :251-257