The interfacial microstructure and fracture toughness of W/Ta multilayer composites

被引:10
作者
Chen, C. [1 ,2 ,6 ]
Yang, S. Y. [1 ]
Liu, R. [1 ]
Chen, Y. [1 ]
Mao, Y. R. [1 ,4 ]
Wang, S. [3 ,5 ]
Zhang, Z. [1 ]
Luo, L. M. [1 ,6 ]
Wu, Y. C. [1 ]
机构
[1] Hefei Univ Technol, Sch Mat Sci & Engn, Hefei 230009, Peoples R China
[2] Hefei Univ Technol, Intelligent Mfg Inst HFUT, Hefei 230009, Peoples R China
[3] Hefei Univ Technol, Inst Ind & Equipment Technol, Hefei 230009, Peoples R China
[4] Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany
[5] Hefei Univ Technol, Anhui Prov Key Lab Aerosp Struct Parts Forming Te, Hefei 230009, Peoples R China
[6] Hefei Univ Technol, Engn Res Ctr High Performance Copper Alloy Mat &, Minist Educ, Hefei 230009, Peoples R China
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2022年 / 831卷
基金
中国国家自然科学基金;
关键词
Tungsten; Multilayer composites; Interfacial microstructure; Fracture toughness; Toughening mechanism; MECHANICAL-PROPERTIES; BRITTLE TRANSITION; TUNGSTEN; DUCTILE; STRENGTH; BEHAVIOR; PARAMETERS; ALLOYS;
D O I
10.1016/j.msea.2021.142272
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The application of tungsten (W) material is limited due to its intrinsic brittleness at low temperature. W-based multilayer composites are one of the solutions to improve the fracture toughness of W. In this study, a series of tungsten/tantalum (W/Ta) multilayer composites are prepared by diffusion bonding. The interfacial microstructure and fracture toughness under different deformation modes are investigated. It has been found that the flexural strength and fracture toughness loading perpendicular to the W/Ta interface are significantly higher than that loading parallel to the interface. The composites bonded at 1000 degrees C exhibits the highest flexural strength and fracture toughness. Both the flexural strength and fracture toughness decrease as bonding temperature increases. The decrease of flexural strength is due to recovery and recrystallization of the W layers. The decrease of fracture toughness is mainly attributed to the changes of the interfacial microstructure and fracture mechanism. For the composites bonded at 1000 degrees C, plastic deformation of the Ta layer and interfacial debonding are the main mechanisms for energy dissipation during crack propagation. As the bonding temperature increases, the decomposition of oxide scale and dynamic recrystallization occur at the vicinity of the W/Ta interface. A layer of fine recrystallization grains is developed at the W/Ta interface when the bonding temperature is higher than 1300 degrees C. As the interfacial bonding defects decreases, the interfacial bonding strength increases. Therefore, the interfacial debonding is inhibited in the composites bonded at a temperature higher than 1200 degrees C, instead, multiple tunnel micro-cracks appear in the W layers.
引用
收藏
页数:15
相关论文
共 41 条
[1]   Plasma-facing material alternatives to tungsten [J].
Brooks, J. N. ;
El-Guebaly, L. ;
Hassanein, A. ;
Sizyuk, T. .
NUCLEAR FUSION, 2015, 55 (04)
[2]  
Cai WD, 1995, REV PARTICUL MATER, V3, P71
[3]   The effect of sintering temperature on the tensile properties and fracture behaviors of W/Ta multilayer composites [J].
Chen, C. ;
Xu, J. ;
Liu, R. ;
Xia, X. ;
Wang, S. ;
Zhang, Z. ;
Zhong, Z. H. ;
Wu, Y. C. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2019, 768
[4]   The microstructure and tensile properties of W/Ti multilayer composites prepared by spark plasma sintering [J].
Chen, Chang ;
Qian, Sanfeng ;
Liu, Rui ;
Wang, Shan ;
Liao, Bin ;
Zhong, Zhihong ;
Cao, Lingfei ;
Coenen, Jan W. ;
Wu, Yucheng .
JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 780 :116-130
[5]   Materials for DEMO and reactor applications-boundary conditions and new concepts [J].
Coenen, J. W. ;
Antusch, S. ;
Aumann, M. ;
Biel, W. ;
Du, J. ;
Engels, J. ;
Heuer, S. ;
Houben, A. ;
Hoeschen, T. ;
Jasper, B. ;
Koch, F. ;
Linke, J. ;
Litnovsky, A. ;
Mao, Y. ;
Neu, R. ;
Pintsuk, G. ;
Riesch, J. ;
Rasinski, M. ;
Reiser, J. ;
Rieth, M. ;
Terra, A. ;
Unterberg, B. ;
Weber, Th ;
Wegener, T. ;
You, J-H ;
Linsmeier, Ch .
PHYSICA SCRIPTA, 2016, T167
[6]   Feasibility study of a tungsten wire-reinforced tungsten matrix composite with ZrOx interfacial coatings [J].
Du, J. ;
Hoeschen, T. ;
Rasinski, M. ;
Wurster, S. ;
Grosinger, W. ;
You, J. -H. .
COMPOSITES SCIENCE AND TECHNOLOGY, 2010, 70 (10) :1482-1489
[7]   Fracture toughness of polycrystalline tungsten alloys [J].
Gludovatz, B. ;
Wurster, S. ;
Hoffmann, A. ;
Pippan, R. .
INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2010, 28 (06) :674-678
[8]   A model of continuous dynamic recrystallization [J].
Gourdet, S ;
Montheillet, F .
ACTA MATERIALIA, 2003, 51 (09) :2685-2699
[10]   Ductile-brittle transition of pure Al-interlayer sandwiched by high strength Al alloy [J].
Han, LH ;
Li, L ;
Sun, J .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2005, 403 (1-2) :165-173