Person-independent head pose estimation using biased manifold embedding

被引:23
作者
Balasubramanian, Vineeth Nallure [1 ]
Krishna, Sreekar [1 ]
Panchanathan, Sethuraman [1 ]
机构
[1] Arizona State Univ, Ctr Cognit Ubiquitous Comp, Tempe, AZ 85281 USA
基金
美国国家科学基金会;
关键词
D O I
10.1155/2008/283540
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Head pose estimation has been an integral problem in the study of face recognition systems and human-computer interfaces, as part of biometric applications. A fine estimate of the head pose angle is necessary and useful for several face analysis applications. To determine the head pose, face images with varying pose angles can be considered to be lying on a smooth low-dimensional manifold in high-dimensional image feature space. However, when there are face images of multiple individuals with varying pose angles, manifold learning techniques often do not give accurate results. In this work, we propose a framework for a supervised form of manifold learning called Biased Manifold Embedding to obtain improved performance in head pose angle estimation. This framework goes beyond pose estimation, and can be applied to all regression applications. This framework, although formulated for a regression scenario, unifies other supervised approaches to manifold learning that have been proposed so far. Detailed studies of the proposed method are carried out on the FacePix database, which contains 181 face images each of 30 individuals with pose angle variations at a granularity of 1. Since biometric applications in the real world may not contain this level of granularity in training data, an analysis of the methodology is performed on sparsely sampled data to validate its effectiveness. We obtained up to 2 average pose angle estimation error in the results from our experiments, which matched the best results obtained for head pose estimation using related approaches. Copyright (c) 2008.
引用
收藏
页数:15
相关论文
共 42 条
[1]   A probabilistic framework for joint head tracking and pose estimation [J].
Ba, SO ;
Odobez, JM .
PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 4, 2004, :264-267
[2]  
BA SO, 2004, P IEEE INT C MULT EX, P1330
[3]  
Balasubramanian M, 2002, SCIENCE, V295
[4]  
BALASUBRAMANIAN VN, 2007, P IEEE COMP SOC C CO
[5]   Laplacian eigenmaps for dimensionality reduction and data representation [J].
Belkin, M ;
Niyogi, P .
NEURAL COMPUTATION, 2003, 15 (06) :1373-1396
[6]  
BENGIO Y, 2004, P 18 ANN C NEUR INF
[7]  
BICHSEL M, 1986, 186 VIS MOD GROUP MI
[8]  
Brown LM, 2002, IEEE WORKSHOP ON MOTION AND VIDEO COMPUTING (MOTION 2002), PROCEEDINGS, P125, DOI 10.1109/MOTION.2002.1182224
[9]  
Chen LB, 2003, IEEE INTERNATIONAL WORKSHOP ON ANALYSIS AND MODELING OF FACE AND GESTURES, P203
[10]   Robust kernel Isomap [J].
Choi, Heeyoul ;
Choi, Seungjin .
PATTERN RECOGNITION, 2007, 40 (03) :853-862