In situ synthesis of CoFe2O4 nanocrystals decorated in mesoporous carbon nanofibers with enhanced electromagnetic performance

被引:53
作者
Li, Yajing [1 ,2 ]
Yuan, Mengwei [1 ,2 ]
Liu, Huihui [1 ,2 ]
Sun, Genban [1 ,2 ]
机构
[1] Beijing Normal Univ, Beijing Key Lab Energy Convers & Storage Mat, Beijing 100875, Peoples R China
[2] Beijing Normal Univ, Coll Chem, Beijing 100875, Peoples R China
关键词
Nanocomposites; CoFe2O4; nanocrystals; Carbon nanofibers; Electromagnetic; Absorbing property; MICROWAVE-ABSORPTION PERFORMANCE; PHASE-CONTROLLED SYNTHESIS; ABSORBING PROPERTIES; AT-C; GRAPHENE; MICROSPHERES; NANOPARTICLES; COMPOSITE; LIGHTWEIGHT; DESIGN;
D O I
10.1016/j.jallcom.2020.154147
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
CoFe2O4 nanocrystals decorated in mesoporous carbon nanofibers (CoFe2O4/C NFs) are prepared by electrospinning and subsequent calcination. The CoFe2O4/C NFs exhibit optimal electromagnetic waves absorption performance. The minimum reflection loss (RL) of CoFe2O4/C NFs reaches -14.0 dB at a frequency of 9.0 GHz and a thickness of 3.5 mm with low doping mass of 20 wt%. In addition, the maximum effective absorption bandwidth range (RL <= -10 dB) is 3.6 GHz with a thickness of 2.5 mm. The interfacial polarization effect of the material itself and the synergistic effect between the binary components are promoted by combining one dimensional (1D) carbon nanofibers with magnetic CoFe2O4 spinel nanocrystals. Therefore, this strategy can achieve good impedance matching and effectively improve the absorbing properties of our materials. This work shows that enriching the diversity of material loss mechanisms, constructing hierarchical nanostructures of fibers, the simple and mature preparation methods can make CoFe2O4/C NFs composites a potentially new-type of microwave absorbing material which can be easily put into production. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 65 条
[1]   Graphene nanohybrids: excellent electromagnetic properties for the absorbing and shielding of electromagnetic waves [J].
Cao, Maosheng ;
Han, Chen ;
Wang, Xixi ;
Zhang, Min ;
Zhang, Yanlan ;
Shu, Jincheng ;
Yang, Huijing ;
Fang, Xiaoyong ;
Yuan, Jie .
JOURNAL OF MATERIALS CHEMISTRY C, 2018, 6 (17) :4586-4602
[2]   Hexagonal and cubic Ni nanocrystals grown on graphene: phase-controlled synthesis, characterization and their enhanced microwave absorption properties [J].
Chen, Tingting ;
Deng, Fang ;
Zhu, Jia ;
Chen, Caifeng ;
Sun, Genban ;
Ma, Shulan ;
Yang, Xiaojing .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (30) :15190-15197
[3]   Flower-like MoS2@Bi2Fe4O9 microspheres with hierarchical structure as electromagnetic wave absorber [J].
Dai, Jingjing ;
Yang, Haibo ;
Wen, Bo ;
Zhou, Hongwei ;
Wang, Lei ;
Lin, Ying .
APPLIED SURFACE SCIENCE, 2019, 479 :1226-1235
[4]   Rational design of core-shell Co@C microspheres for high-performance microwave absorption [J].
Ding, Ding ;
Wang, Ying ;
Li, Xuandong ;
Qiang, Rong ;
Xu, Ping ;
Chu, Wenlei ;
Han, Xijiang ;
Du, Yunchen .
CARBON, 2017, 111 :722-732
[5]   Three-Dimensional Architecture Reduced Graphene Oxide-LiFePO4 Composite: Preparation and Excellent Microwave Absorption Performance [J].
Dong, Jingjing ;
Lin, Ying ;
Zong, Hanwen ;
Yang, Haibo ;
Wang, Lei ;
Dai, Zhonghua .
INORGANIC CHEMISTRY, 2019, 58 (03) :2031-2041
[6]   The electromagnetic properties and microwave absorption of mesoporous carbon [J].
Du, Yunchen ;
Liu, Tao ;
Yu, Bin ;
Gao, Haibin ;
Xu, Ping ;
Wang, Jingyu ;
Wang, Xiaohong ;
Han, Xijiang .
MATERIALS CHEMISTRY AND PHYSICS, 2012, 135 (2-3) :884-891
[7]   A wormhole-like porous carbon/magnetic particles composite as an efficient broadband electromagnetic wave absorber [J].
Fang, Jiyong ;
Liu, Tao ;
Chen, Zheng ;
Wang, Yan ;
Wei, Wei ;
Yue, Xigui ;
Jiang, Zhenhua .
NANOSCALE, 2016, 8 (16) :8899-8909
[8]   CoFe2O4 coated carbon fiber paper fabricated via a spray pyrolysis method for trapping lithium polysulfide in Li-S batteries [J].
Feng, Xiaohua ;
Wang, Qian ;
Li, Rongrong ;
Li, Hua .
APPLIED SURFACE SCIENCE, 2019, 478 :341-346
[9]   Controllable N-Doped Carbonaceous Composites with Highly Dispersed Ni Nanoparticles for Excellent Microwave Absorption [J].
Gao, Shengshuai ;
An, Qingda ;
Xiao, Zuoyi ;
Zhai, Shangru ;
Yang, Dongjiang .
ACS APPLIED NANO MATERIALS, 2018, 1 (10) :5895-5906
[10]   Conducting Polymers for Tissue Engineering [J].
Guo, Baolin ;
Ma, Peter X. .
BIOMACROMOLECULES, 2018, 19 (06) :1764-1782