Inverted planar perovskite solar cells featuring ligand-protecting colloidal NiO nanocrystals hole transport layer

被引:15
作者
Liu, Heming [1 ,2 ,3 ]
Song, Jian [1 ,2 ,3 ,4 ]
Qin, Yongshan [1 ,2 ,3 ]
Mou, Junpeng [1 ,2 ,3 ]
Qiu, Qinyuan [1 ,2 ,3 ]
Zhao, Yulong [5 ]
Zhu, Lei [1 ,2 ,3 ]
Qiang, Yinghuai [1 ,2 ,3 ]
机构
[1] China Univ Min & Technol, Sch Mat Sci & Engn, Xuzhou 221116, Jiangsu, Peoples R China
[2] Jiangsu Prov Engn Lab High Efficient Energy Stora, Xuzhou 221116, Jiangsu, Peoples R China
[3] Xuzhou City Key Lab High Efficient Energy Storage, Xuzhou 221116, Jiangsu, Peoples R China
[4] Jiangsu Huaheng New Energy Co, Xuzhou 221116, Jiangsu, Peoples R China
[5] China Univ Min & Technol, Xuzhou, Jiangsu, Peoples R China
关键词
Inverted planar perovskite solar cells; NiO; Colloidal nanocrystals; Ligand-protecting; HIGHLY EFFICIENT; TEMPERATURE; OXIDE; STABILITY;
D O I
10.1016/j.vacuum.2019.109077
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Nickel oxide (NiO) is a promising material to replace organic hole transport materials and solve the stability problem of perovskite solar cells (PSCs). Various methodologies have been applied to synthesize high quality NiO, especially for colloidal nanocrystals (NCs) route, which well behaves in the nanocrystals synthesis field. To better introduce this route to the perovskite solar cell field and produce well-performance hole transport layers (HTLs) of NiO NCs, we got inspired by ligand-protecting strategy. The stability of NiO NCs in reaction system is improved significantly, and the nucleation and growth of NiO NCs can be controlled effectively, which makes for the high crystallinity. Furthermore, the extraordinary dispersion of NiO NCs in chlorobenzene solvent can be observed, which makes the preparation of HTL films by simple spin-coating method possible. The relevant measurements and analysis manifest that the HTLs of NiO NCs with excellent transparency, good film-forming performance, admirable hole transport capability and few interface traps can be obtained by optimizing the concentration of NiO NCs, finally contributing to the photovoltaic performance of corresponding inverted planar PSCs. Our work broadens the application of colloidal chemical synthetic route in PSCs field and highlights the superiority of this protocol further.
引用
收藏
页数:10
相关论文
共 50 条
[41]   Wet-Chemically Prepared NiO Layers as Hole Transport Layer in the Inverted Organic Solar Cell [J].
Lim, Dong Chan ;
Kim, Young Tae ;
Shim, Won Hyun ;
Jang, A-Young ;
Lim, Jae-Hong ;
Do Kim, Yang ;
Jeong, Yongsoo ;
Kim, Young Dok ;
Lee, Kyu Hyn .
BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2011, 32 (03) :1067-1070
[42]   Efficient and Stable Inverted Perovskite Solar Cells with Graphene Oxide-Modified Hole Transport Layer [J].
Chen, Yuanyuan ;
Cheng, Zhendong ;
Qiao, Feiyang ;
Gao, Chao ;
Zhang, Dezhao ;
Wang, Yangrunqian ;
Wang, Xin ;
Liang, Jinjin ;
Liu, Hong ;
Shen, Wenzhong .
ENERGY TECHNOLOGY, 2022, 10 (11)
[43]   CuGaO2 Nanosheet Arrays as the Hole-Transport Layer in Inverted Perovskite Solar Cells [J].
Chen, Liang ;
Qiu, Linlin ;
Wang, Huijia ;
Yuan, Yongfeng ;
Song, Lixin ;
Xie, Fuqiang ;
Xiong, Jie ;
Du, Pingfan .
ACS APPLIED NANO MATERIALS, 2022, 5 (07) :10055-10063
[44]   3 D NiO Nanowall Hole-Transporting Layer for the Passivation of Interfacial Contact in Inverted Perovskite Solar Cells [J].
Yin, Xin ;
Zhai, Jifeng ;
Du, Pingfan ;
Li, Ni ;
Song, Lixin ;
Xiong, Jie ;
Ko, Frank .
CHEMSUSCHEM, 2020, 13 (05) :1006-1012
[45]   Improving the efficiency and environmental stability of inverted planar perovskite solar cells via silver-doped nickel oxide hole-transporting layer [J].
Wei, Ying ;
Yao, Kai ;
Wang, Xiaofeng ;
Jiang, Yihua ;
Liu, Xueyuan ;
Zhou, Naigen ;
Li, Fan .
APPLIED SURFACE SCIENCE, 2018, 427 :782-790
[46]   High-performance inverted planar perovskite solar cells without a hole transport layer via a solution process under ambient conditions [J].
Bao, Xichang ;
Zhu, Qianqian ;
Qiu, Meng ;
Yang, Ailing ;
Wang, Yujin ;
Zhu, Dangqiang ;
Wang, Junyi ;
Yang, Renqiang .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (38) :19294-19298
[47]   Interface engineering with NiO nanocrystals for highly efficient and stable planar perovskite solar cells [J].
Zhang, Weina ;
Zhang, Xuezhen ;
Wu, Tongyue ;
Sun, Weihai ;
Wu, Jihuai ;
Lan, Zhang .
ELECTROCHIMICA ACTA, 2019, 293 :211-219
[48]   Enhancing the efficiency of low-temperature planar perovskite solar cells by modifying the interface between perovskite and hole transport layer with polymers [J].
Cai, Yangyang ;
Zhang, Zongbao ;
Zhou, Yang ;
Liu, Hui ;
Qin, Qiqi ;
Lu, Xubing ;
Gao, Xingsen ;
Shui, Lingling ;
Wu, Sujuan ;
Liu, Junming .
ELECTROCHIMICA ACTA, 2018, 261 :445-453
[49]   Device simulation of inverted CH3NH3PbI3-xClx perovskite solar cells based on PCBM electron transport layer and NiO hole transport layer [J].
Zhao, Peng ;
Liu, Ziye ;
Lin, Zhenhua ;
Chen, Dazheng ;
Su, Jie ;
Zhang, Chunfu ;
Zhang, Jincheng ;
Chang, Jingjing ;
Hao, Yue .
SOLAR ENERGY, 2018, 169 :11-18
[50]   Graphene oxide/PEDOT:PSS composite hole transport layer for efficient and stable planar heterojunction perovskite solar cells [J].
Lee, Da-Young ;
Na, Seok-In ;
Kim, Seok-Soon .
NANOSCALE, 2016, 8 (03) :1513-1522