Geometrical characterization of weakly efficient points

被引:10
|
作者
Plastria, F [1 ]
Carrizosa, E [1 ]
机构
[1] UNIV SEVILLA,FAC MATEMAT,TARFIA,SEVILLA,SPAIN
关键词
multiobjective optimization; convex functions; weak efficiency;
D O I
10.1007/BF02192255
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this note, we present a geometrical characterization of the set of weakly efficient points in constrained convex multiobjective optimization problems, valid for a compact set of objectives.
引用
收藏
页码:217 / 223
页数:7
相关论文
共 26 条
  • [1] Characterizations of efficient and weakly efficient points in nonconvex vector optimization
    Zhao, Ke Quan
    Yang, Xin Min
    JOURNAL OF GLOBAL OPTIMIZATION, 2015, 61 (03) : 575 - 590
  • [2] Characterizations of efficient and weakly efficient points in nonconvex vector optimization
    Ke Quan Zhao
    Xin Min Yang
    Journal of Global Optimization, 2015, 61 : 575 - 590
  • [3] Existence of Weakly Efficient Solutions in Vector Optimization
    Lucelina BATISTA SANTOS
    Marko ROJAS-MEDAR
    Gabriel RUIZ-GARZóN
    ActaMathematicaSinica(EnglishSeries), 2008, 24 (04) : 599 - 606
  • [4] Existence of weakly efficient solutions in vector optimization
    Lucelina Batista Santos
    Marko Rojas-Medar
    Gabriel Ruiz-Garzón
    Acta Mathematica Sinica, English Series, 2008, 24
  • [5] Existence of weakly efficient solutions in vector optimization
    Santos, Lucelina Batista
    Rojas-Medar, Marko
    Ruiz-Garzon, Gabriel
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2008, 24 (04) : 599 - 606
  • [6] Characterization of (weakly/properly/robust) efficient solutions in nonsmooth semi-infinite multiobjective optimization using convexificators
    Kabgani, Alireza
    Soleimani-damaneh, Majid
    OPTIMIZATION, 2018, 67 (02) : 217 - 235
  • [7] A note on characterization of (weakly/properly/robust) efficient solutions in nonsmooth semi-infinite multiobjective optimization using convexificators
    Kabgani, Alireza
    Soleimani-damaneh, Majid
    OPTIMIZATION, 2023, 72 (09) : 2393 - 2398
  • [8] Solving Optimization Problems over the Weakly Efficient Set
    Sadeghi, Javad
    Mohebi, Hossein
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2021, 42 (02) : 180 - 210
  • [9] Existence of weakly efficient solutions in nonsmooth vector optimization
    Santos, Lucelina Batista
    Rojas-Medar, Marko
    Ruiz-Garzon, Gabriel
    Rufian-Lizana, Antonio
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 200 (02) : 547 - 556
  • [10] STABILITY OF MAJORLY EFFICIENT POINTS AND SOLUTIONS IN MULTIOBJECTIVE PROGRAMMING
    GU GUOHUA AND HU YUDA (Department of Mathematics and Mechanics
    Applied Mathematics:A Journal of Chinese Universities(Series B), 1995, (03) : 313 - 324