Improved Designs of Multifunctional Covalent-Organic Frameworks: Hydrogen Storage, Methane Storage, and Water Harvesting

被引:27
作者
Nemiwal, Meena [1 ]
Sharma, Venu [2 ]
Kumar, Dinesh [3 ]
机构
[1] Malaviya Natl Inst Technol, Dept Chem, Jaipur 302017, Rajasthan, India
[2] CSIR, Med Chem Div, Indian Inst Integrat Med, Jammu 180001, India
[3] Cent Univ Gujarat, Sch Chem Sci, Gandhinagar 382030, India
关键词
Covalent organic frameworks; hydrogen storage; water harvesting; methane storage; crystalline polymers; pore surface engineering; IN-SILICO DESIGN; ENERGY-STORAGE; CARBON-DIOXIDE; ADSORPTION; CO2; CRYSTALLINE; SEPARATION; PRINCIPLES; STABILITY; CAPACITY;
D O I
10.2174/1570193X17999201127105752
中图分类号
O62 [有机化学];
学科分类号
070303 ; 081704 ;
摘要
Covalent Organic Frameworks (COFs) are covalently bonded polymers that are synthesised applying a bottom-up approach using molecular building units that have pre-designed geometry. COFs are crystalline and have control over the position of building units in two and three dimensions, due to which highly regular, rigid, and porous structures can be developed for tuning chemical and physical properties of the network. The present mini-review provides comprehensive overviews of the applications of the COFs in gas storage and water harvesting.
引用
收藏
页码:1026 / 1036
页数:11
相关论文
共 50 条
[31]   Predicting Methane Storage in Open-Metal-Site Metal-Organic Frameworks [J].
Koh, Hyun Seung ;
Rana, Malay Kumar ;
Wong-Foy, Antek G. ;
Siegel, Donald J. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (24) :13451-13458
[32]   Adsorption of uranium (VI) by metal-organic frameworks and covalent-organic frameworks from water [J].
Mei, Douchao ;
Liu, Lijia ;
Yan, Bing .
COORDINATION CHEMISTRY REVIEWS, 2023, 475
[33]   Hydrogen Storage in Lithitim-Functionalized 3-D Covalent-Organic Framework Materials [J].
Klontzas, Emmanouel ;
Tylianakis, Emmanuel ;
Froudakis, George E. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (50) :21253-21257
[34]   Research Progress in Covalent Organic Frameworks for Energy Storage and Conversion [J].
Peng Zhengkang ;
Ding Huimin ;
Chen Rufan ;
Gao Chao ;
Wang Cheng .
ACTA CHIMICA SINICA, 2019, 77 (08) :681-689
[35]   Storage of Hydrogen, Methane, and Carbon Dioxide in Highly Porous Covalent Organic Frameworks for Clean Energy Applications [J].
Furukawa, Hiroyasu ;
Yaghi, Omar M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (25) :8875-8883
[36]   Metal-Organic Frameworks for Methane Storage [J].
Wang, Xuan ;
Fordham, Stephen ;
Zhou, Hong-Cai .
NANOMATERIALS FOR SUSTAINABLE ENERGY, 2015, 1213 :173-191
[37]   Sustainable fabrication of metal-organic frameworks for improved hydrogen storage [J].
Yu, Qian ;
Doan, Huan V. ;
Xia, Yongde ;
Hu, Xiayi ;
Zhu, Yanqiu ;
Ting, Valeska P. ;
Taheri, Mahdiar ;
Tian, Mi .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 81 :371-381
[38]   Predicting 1,3,5,7-tetrakis(4-aminophenyl) adamantine based covalent-organic frameworks as hydrogen storage materials [J].
Li, Xiao-Dong ;
Feng, Shi-Quan ;
Guo, Feng ;
Liu, Xiu-Ying ;
Yu, Jing-Xin ;
Hou, Zhi-Wei .
RSC ADVANCES, 2016, 6 (26) :21517-21525
[39]   Ca2+- and Mg2+-doped covalent organic frameworks exhibiting high hydrogen and acetylene storage [J].
Guo, Jing-Hua ;
Zhang, Hong ;
Gong, Min ;
Cheng, Xin-Lu .
STRUCTURAL CHEMISTRY, 2013, 24 (02) :691-703
[40]   Methane storage in flexible and dynamical metal-organic frameworks [J].
Forrest, Katherine A. ;
Verma, Gaurav ;
Ye, Yingxiang ;
Ren, Junyu ;
Ma, Shengqian ;
Pham, Tony ;
Space, Brian .
CHEMICAL PHYSICS REVIEWS, 2022, 3 (02)