Vector measure Maurey-Rosenthal-type factorizations and l-sums of L1-spaces

被引:8
作者
Fernández, A
Mayoral, F
Naranjo, F
Sáez, C
Sánchez-Pérez, EA
机构
[1] Univ Sevilla, Escuela Tecn Super Ingenieros, Dept Matemat Aplicada 2, Seville 41092, Spain
[2] Escuela Univ Politecn, Dept Matemat Aplicada 2, Seville 41011, Spain
[3] Univ Politecn Valencia, Dept Matemat Aplicada, Valencia 46022, Spain
关键词
Vector measures; p-integrable functions; factorizations of operators; l-sum of L-1-spaces;
D O I
10.1016/j.jfa.2004.06.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider a vector measure of bounded variation in with values in a Banach space and an operator T : X --> L-1(m), where L-1 (m) is the space of integrable functions with respect to In. We characterize when T can be factorized through the space L-2(m) by means of a multiplication operator given by a function of L-2(\m\), where \m\ is the variation of m, extending in this way the Maurey-Rosenthal Theorem. We use this result to obtain information about the structure of the space L-1(m) when in is a sequential vector measure. In this case the space L-1(m) is an l-sum of L-1-spaces. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:460 / 485
页数:26
相关论文
共 24 条