Mechanism involved in the treatment of sulfamethoxazole in wastewater using a constructed wetland microbial fuel cell system

被引:60
|
作者
Dai, Meixue [2 ]
Zhang, Yujia [1 ,2 ]
Wu, Yiming [2 ]
Sun, Ruipeng [1 ]
Zong, Wansong [1 ]
Kong, Qiang [1 ]
机构
[1] Shandong Normal Univ, Coll Geog & Environm, Jinan 250014, Peoples R China
[2] Shandong Normal Univ, Coll Life Sci, 88 Wenhua Donglu, Jinan 250014, Shandong, Peoples R China
来源
JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING | 2021年 / 9卷 / 05期
基金
中国国家自然科学基金;
关键词
Constructed wetland; Constructed wetland microbial fuel cell; Sulfamethoxazole degradation; Pollutant removal; Antibiotic-resistance genes; ANTIBIOTIC-RESISTANCE GENES; EXTRACELLULAR POLYMERIC SUBSTANCES; REMOVAL; PERFORMANCE; COMMUNITY; PHOTODEGRADATION; DENITRIFICATION; GENERATION; BIODEGRADATION; SULFAMETHAZINE;
D O I
10.1016/j.jece.2021.106193
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A constructed wetland (CW) and a constructed wetland microbial fuel cell (CW-MFC) were used for 70 d to remove sulfamethoxazole from wastewater. The amount of sulfamethoxazole removed, extracellular polymer content, microbial community evolution, and changes in the abundances of genes related to antibiotic resistance were assessed. The total nitrogen, ammonia nitrogen, and sulfamethoxazole removal efficiencies were significantly (P < 0.05) higher (6.87%, 21.07%, and 11.05% higher, respectively) for the CW-MFC than the CW. Good removal efficiencies and the power generation performance indicated that the CW-MFC was more stable than the CW in the presence of sulfamethoxazole. The extracellular polymer content was lower for the CW-MFC than the CW. The phylum Proteobacteria was dominant in the CW-MFC. High Pseudomonas concentrations in the CW would have caused organic matter decomposition but not electricity generation. The Methylotenera content was 4.5 times higher in the CW-MFC anode than the CW anode. Methylotenera are able to perform denitrification and could have caused the high nitrogen removal rate for the CW-MFC. The sulfamethoxazole resistance gene copy number was much higher for the CW than the CW-MFC, indicating a higher risk of antibiotic resistance genes spreading in the CW than the CW-MFC. The results indicated that the CW-MFC is a promising technique for removing sulfamethoxazole from wastewater that offers environmental and economic benefits over alternative methods.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Sustainable treatment of urban wastewater using a constructed wetland coupled with a microbial fuel cell
    Modini, Laura
    Pizarro, Ana
    Zerbatto, Mariel
    INGENIERIA DEL AGUA, 2023, 27 (04): : 283 - 293
  • [2] Enhanced Swine Wastewater Treatment by Constructed Wetland-Microbial Fuel Cell Systems
    Zhang, Yun
    Liu, Feng
    Lin, Yidong
    Sun, Lei
    Guo, Xinru
    Yang, Shuai
    He, Jinlong
    WATER, 2022, 14 (23)
  • [3] Treatment mechanism of hexavalent chromium wastewater in constructed wetland-microbial fuel cell coupling system
    Shi, Yucui
    Tang, Gang
    You, Shaohong
    Jiang, Pingping
    Zhang, Xuehong
    Deng, Zhenliang
    FRONTIERS IN ENVIRONMENTAL SCIENCE, 2022, 10
  • [4] Role of macrophyte species in constructed wetland-microbial fuel cell for simultaneous wastewater treatment and bioenergy generation
    Yang, Yan
    Zhao, Yaqian
    Tang, Cheng
    Xu, Lei
    Morgan, David
    Liu, Ranbin
    CHEMICAL ENGINEERING JOURNAL, 2020, 392
  • [5] Treatment of Oil Wastewater and Electricity Generation by Integrating Constructed Wetland with Microbial Fuel Cell
    Yang, Qiao
    Wu, Zhenxing
    Liu, Lifen
    Zhang, Fengxiang
    Liang, Shengna
    MATERIALS, 2016, 9 (11):
  • [6] Degradation of nitrobenzene-containing wastewater by a microbial-fuel-cell-coupled constructed wetland
    Xie, Tingyu
    Jing, Zhaoqian
    Hu, Jing
    Yuan, Peng
    Liu, Yali
    Cao, Shiwei
    ECOLOGICAL ENGINEERING, 2018, 112 : 65 - 71
  • [7] Electricity production enhancement in a constructed wetland-microbial fuel cell system for treating saline wastewater
    Xu, Fei
    Ouyang, De-long
    Rene, Eldon R.
    Ng, How Yong
    Guo, Ling-ling
    Zhu, Ya-jie
    Zhou, Lu-lu
    Yuan, Qing
    Miao, Ming-sheng
    Wang, Qian
    Kong, Qiang
    BIORESOURCE TECHNOLOGY, 2019, 288
  • [8] Constructed Wetland Coupled Microbial Fuel Cell: A Clean Technology for Sustainable Treatment of Wastewater and Bioelectricity Generation
    Kesarwani, Shiwangi
    Panwar, Diksha
    Mal, Joyabrata
    Pradhan, Nirakar
    Rani, Radha
    FERMENTATION-BASEL, 2023, 9 (01):
  • [9] Performance and mechanism of constructed wetland-microbial fuel cell systems in treating mariculture wastewater contaminated with antibiotics
    Liu, Fei-fei
    Zhang, Yu-xue
    Lu, Tong
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2023, 169 : 293 - 303
  • [10] BIOELECTROCHEMICAL TREATMENT MECHANISMS OF PETROLUME REFINERY WASTEWATER IN INTEGRATED SYSTEM OF MICROBIAL FUEL CELL-CONSTRUCTED WETLAND
    Hussain, T. A.
    Ismail, Z. Z.
    IRAQI JOURNAL OF AGRICULTURAL SCIENCES, 2020, 51 (06): : 1593 - 1600