Broadly Accessible Self-Consistent Field Theory for Block Polymer Materials Discovery

被引:168
|
作者
Arora, Akash [1 ]
Qin, Jian [2 ]
Morse, David C. [1 ]
Delaney, Kris T. [3 ,4 ]
Fredrickson, Glenn H. [3 ,4 ]
Bates, Frank S. [1 ]
Dorfman, Kevin D. [1 ]
机构
[1] Univ Minnesota, Dept Chem Engn & Mat Sci, 421 Washington Ave SE, Minneapolis, MN 55455 USA
[2] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
[3] Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA
[4] Univ Calif Santa Barbara, Mat Res Lab, Santa Barbara, CA 93106 USA
基金
美国国家科学基金会;
关键词
ORDERED PHASES; DIBLOCK COPOLYMERS; THEORY SIMULATIONS; CONVERGENCE; STABILITY; ALGORITHM; NETWORK; SCFT;
D O I
10.1021/acs.macromol.6b00107
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Self-consistent field theory (SCFT) is a powerful tool for the design and interpretation of experiments on block polymer materials. In this Perspective, we lower the barrier to entry to the use of SCFT by experimental groups by two means. First, we present a pedagogical introduction to an improved version of the open-source Polymer Self-Consistent Field (PSCF) software package and of the underlying theory. Second, we discuss methods for generating robust initial guesses for the fields that are computed in SCFT. To demonstrate our approach, we present two case studies in which a typical desktop computer has been used to simulate the structure of (i) body-centered cubic, face-centered cubic, A15, and Frank-Kasper a sphere forming phases of a diblock copolymer melt and (ii) two core shell morphologies of ABAC tetrablock terpolymers. A companion Web site provides all of the relevant software and detailed instructions for reproducing all results contained herein.
引用
收藏
页码:4675 / 4690
页数:16
相关论文
共 50 条
  • [41] A robust and efficient line search for self-consistent field iterations
    Herbst, Michael F.
    Levitt, Antoine
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 459
  • [42] Functional level-set derivative for a polymer self consistent field theory Hamiltonian
    Ouaknin, Gaddiel
    Laachi, Nabil
    Bochkov, Daniil
    Delaney, Kris
    Fredrickson, Glenn H.
    Gibou, Frederic
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 345 : 207 - 223
  • [43] ELLIPTIC PRECONDITIONER FOR ACCELERATING THE SELF-CONSISTENT FIELD ITERATION IN KOHN-SHAM DENSITY FUNCTIONAL THEORY
    Lin, Lin
    Yang, Chao
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (05) : S277 - S298
  • [44] Lattice self-consistent field calculations of confined symmetric block copolymers of various chain architectures
    Zhang, Jingxue
    Wu, Jiaping
    Jiang, Run
    Wang, Zheng
    Yin, Yuhua
    Li, Baohui
    Wang, Qiang
    SOFT MATTER, 2020, 16 (17) : 4311 - 4323
  • [45] IMPROVED SELF-CONSISTENT FIELD ITERATION FOR KOHN--SHAM DENSITY FUNCTIONAL THEORY
    Xu, Fei
    Huang, Qiumei
    MULTISCALE MODELING & SIMULATION, 2024, 22 (01) : 142 - 154
  • [46] Bicontinuous Phases in Diblock Copolymer/Homopolymer Blends: Simulation and Self-Consistent Field Theory
    Martinez-Veracoechea, Francisco J.
    Escobedo, Fernando A.
    MACROMOLECULES, 2009, 42 (05) : 1775 - 1784
  • [47] Acceleration of self-consistent field iteration for Kohn-Sham density functional theory☆
    Ge, Fengmin
    Luo, Fusheng
    Xu, Fei
    APPLIED MATHEMATICS LETTERS, 2025, 163
  • [48] Self-Consistent Field Theory within Hildebrand Approximation: Microphase Separation in Gradient Copolymers
    Kriksin, Yury
    Erukhimovich, Igor
    ten Brinke, Gerrit
    MACROMOLECULAR THEORY AND SIMULATIONS, 2016, 25 (05) : 466 - 474
  • [49] Peculiarities of calculating entropy in self-consistent field models
    Ovechkin, A. A.
    Novikov, V. G.
    Grushin, A. S.
    HIGH TEMPERATURE, 2011, 49 (06) : 815 - 825
  • [50] Self-consistent field theory for lipid-based liquid crystals: Hydrogen bonding effect
    Lee, Won Bo
    Mezzenga, Raffaele
    Fredrickson, Glenn H.
    JOURNAL OF CHEMICAL PHYSICS, 2008, 128 (07)