Computational Amide I 2D IR Spectroscopy as a Probe of Protein Structure and Dynamics

被引:101
作者
Reppert, Mike [1 ,2 ]
Tokmakoff, Andrei [1 ]
机构
[1] Univ Chicago, James Franck Inst, Dept Chem, Inst Biophys Dynam, Chicago, IL 60637 USA
[2] MIT, Dept Chem, Cambridge, MA 02139 USA
来源
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, VOL 67 | 2016年 / 67卷
基金
美国国家科学基金会;
关键词
molecular dynamics simulations; ultrafast spectroscopy; conformational heterogeneity; protein folding; structural ensembles; 2-DIMENSIONAL INFRARED-SPECTROSCOPY; HYDROGEN-BOND DYNAMICS; MOLECULAR-STRUCTURE DISTORTIONS; VIBRATIONAL ECHO SPECTROSCOPY; BETA-HAIRPIN PEPTIDE; SECONDARY STRUCTURE; NMR-SPECTROSCOPY; EXCHANGE SPECTROSCOPY; INTRINSIC DISORDER; 2D-IR SPECTROSCOPY;
D O I
10.1146/annurev-physchem-040215-112055
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Two-dimensional infrared spectroscopy of amide I vibrations is increasingly being used to study the structure and dynamics of proteins and peptides. Amide I, a primarily carbonyl stretching vibration of the protein backbone, provides information on secondary structures as a result of vibrational couplings and on hydrogen-bonding contacts when isotope labeling is used to isolate specific sites. In parallel with experiments, computational models of amide I spectra that use atomistic structures from molecular dynamics simulations have evolved to calculate experimental spectra. Mixed quantum-classical models use spectroscopic maps to translate the structural information into a quantum-mechanical Hamiltonian for the spectroscopically observed vibrations. This allows one to model the spectroscopy of large proteins, disordered states, and protein conformational dynamics. With improvements in amide I models, quantitative modeling of time-dependent structural ensembles and of direct feedback between experiments and simulations is possible. We review the advances in developing these models, their theoretical basis, and current and future applications.
引用
收藏
页码:359 / 386
页数:28
相关论文
共 144 条
[1]   On the temperature dependence of amide I intensities of peptides in solution [J].
Ackels, Loren ;
Stawski, Philipp ;
Amunson, Krista E. ;
Kubelka, Jan .
VIBRATIONAL SPECTROSCOPY, 2009, 50 (01) :2-9
[2]   Measuring protein dynamics with ultrafast two-dimensional infrared spectroscopy [J].
Adamczyk, Katrin ;
Candelaresi, Marco ;
Robb, Kirsty ;
Gumiero, Andrea ;
Walsh, Martin A. ;
Parker, Anthony W. ;
Hoskisson, Paul A. ;
Tucker, Nicholas P. ;
Hunt, Neil T. .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2012, 23 (06)
[3]   Simplified Protein Models: Predicting Folding Pathways and Structure Using Amino Acid Sequences [J].
Adhikari, Aashish N. ;
Freed, Karl F. ;
Sosnick, Tobin R. .
PHYSICAL REVIEW LETTERS, 2013, 111 (02)
[4]   Dynamical effects in line shapes for coupled chromophores: Time-averaging approximation [J].
Auer, B. M. ;
Skinner, J. L. .
JOURNAL OF CHEMICAL PHYSICS, 2007, 127 (10)
[5]   Structural Disorder of Folded Proteins: Isotope-Edited 2D IR Spectroscopy and Markov State Modeling [J].
Baiz, Carlos R. ;
Tokmakoff, Andrei .
BIOPHYSICAL JOURNAL, 2015, 108 (07) :1747-1757
[6]  
Baiz CR, 2013, ULTRAFAST INFRARED VIBRATIONAL SPECTROSCOPY, P361
[7]   A Molecular Interpretation of 2D IR Protein Folding Experiments with Markov State Models [J].
Baiz, Carlos R. ;
Lin, Yu-Shan ;
Peng, Chunte Sam ;
Beauchamp, Kyle A. ;
Voelz, Vincent A. ;
Pande, Vijay S. ;
Tokmakoff, Andrei .
BIOPHYSICAL JOURNAL, 2014, 106 (06) :1359-1370
[8]   What vibrations tell us about proteins [J].
Barth, A ;
Zscherp, C .
QUARTERLY REVIEWS OF BIOPHYSICS, 2002, 35 (04) :369-430
[9]   Bayesian Energy Landscape Tilting: Towards Concordant Models of Molecular Ensembles [J].
Beauchamp, Kyle A. ;
Pande, Vijay S. ;
Das, Rhiju .
BIOPHYSICAL JOURNAL, 2014, 106 (06) :1381-1390
[10]   Application of two-dimensional infrared spectroscopy to benchmark models for the amide I band of proteins [J].
Bondarenko, Anna S. ;
Jansen, Thomas L. C. .
JOURNAL OF CHEMICAL PHYSICS, 2015, 142 (21)