Ammonia Synthesis from Electrocatalytic N2 Reduction under Ambient Conditions by Fe2O3 Nanorods

被引:101
作者
Xiang, Xiaojiao [1 ,2 ]
Wang, Zao [2 ]
Shi, Xifeng [3 ]
Fan, Meikun [1 ]
Sun, Xuping [2 ]
机构
[1] Southwest Jiaotong Univ, Fac Geosci & Environm Engn, Chengdu 610031, Sichuan, Peoples R China
[2] Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Chengdu 610054, Sichuan, Peoples R China
[3] Shandong Normal Univ, Coll Chem Chem Engn & Mat Sci, Jinan 250014, Shandong, Peoples R China
关键词
Fe2O3; nanorods; electrocatalysis; ammonia synthesis; ambient conditions; ELECTROCHEMICAL SYNTHESIS; ATMOSPHERIC-PRESSURE; HYDROTHERMAL SYNTHESIS; LOW-TEMPERATURE; ALPHA-FE2O3; NITROGEN; NH3; WATER; NANOSHEETS; EVOLUTION;
D O I
10.1002/cctc.201801208
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The conventional Haber-Bosch process for industrial ammonia production from N2 and H2 is not only energy-intensive but also releases a large amount of CO2. The electrocatalytic nitrogen reduction reaction (NRR) is regarded as a sustainable and environmentally-benign alternative approach for NH3 production under ambient conditions. In this communication, it is reported that Fe2O3 nanorods act as an efficient electrocatalyst for the NRR. In 0.1 M Na2SO4, it attains a Faradic efficiency of 0.94% and NH3 yield of 15.9 mgh 1mg 1 cat. at 0.8 V vs. reversible hydrogen electrode. Furthermore, this catalyst also shows good stability during electrolysis and recycling tests.
引用
收藏
页码:4530 / 4535
页数:6
相关论文
共 51 条
[1]   A highly sensitive ammonia chemical sensor based on α-Fe2O3 nanoellipsoids [J].
Abaker, M. ;
Umar, Ahmad ;
Baskoutas, S. ;
Dar, G. N. ;
Zaidi, S. A. ;
Al-Sayari, S. A. ;
Al-Hajry, A. ;
Kim, S. H. ;
Hwang, S. W. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2011, 44 (42)
[2]  
[Anonymous], 2003, ANGEW CHE, DOI [10.1002/ange.200301553, DOI 10.1002/ANGE.200301553]
[3]  
[Anonymous], 2017, ANGEW CHEM-GER EDIT, DOI DOI 10.1002/ANGE.201610776
[4]   Superior lithium storage properties of α-Fe2O3 nano-assembled spindles [J].
Banerjee, Abhik ;
Aravindan, Vanchiappan ;
Bhatnagar, Sumit ;
Mhamane, Dattakumar ;
Madhavi, Srinivasan ;
Ogale, Satishchandra .
NANO ENERGY, 2013, 2 (05) :890-896
[5]  
Chen S., 2017, ANGEW CHEM, V129, P2743
[6]   Electrocatalytic Synthesis of Ammonia at Room Temperature and Atmospheric Pressure from Water and Nitrogen on a Carbon-Nanotube-Based Electrocatalyst [J].
Chen, Shiming ;
Perathoner, Siglinda ;
Ampelli, Claudio ;
Mebrahtu, Chalachew ;
Su, Dangsheng ;
Centi, Gabriele .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (10) :2699-2703
[7]   Enhancement of structural stability of nanosized amorphous Fe2O3 powders by surface modification [J].
Chen, Y. ;
Li, X. H. ;
Wu, P. L. ;
Li, W. ;
Zhang, X. Y. .
MATERIALS LETTERS, 2007, 61 (4-5) :1223-1226
[8]   A review of the existing and alternative methods for greener nitrogen fixation [J].
Cherkasov, N. ;
Ibhadon, A. O. ;
Fitzpatrick, P. .
CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2015, 90 :24-33
[9]   Electrochemical synthesis of ammonia directly from N2 and water over iron-based catalysts supported on activated carbon [J].
Cui, Baochen ;
Zhang, Jianhua ;
Liu, Shuzhi ;
Liu, Xianjun ;
Xiang, Wei ;
Liu, Longfei ;
Xin, Hongyu ;
Lefler, Matthew J. ;
Licht, Stuart .
GREEN CHEMISTRY, 2017, 19 (01) :298-304
[10]  
Dybkjaer I., 1995, AMMONIA, P199, DOI [10.1007/978-3-642-79197-0_6, DOI 10.1007/978-3-642-79197-0_6]