Hyperspectral Restoration and Fusion With Multispectral Imagery via Low-Rank Tensor-Approximation

被引:48
作者
Liu, Na [1 ,2 ]
Li, Lu [3 ]
Li, Wei [4 ,5 ]
Tao, Ran [4 ,5 ]
Fowler, James E. [6 ]
Chanussot, Jocelyn [7 ,8 ]
机构
[1] Beijing Univ Chem Technol, Coll Informat Sci & Technol, Beijing 100029, Peoples R China
[2] Univ Grenoble Alpes, F-38000 Grenoble, France
[3] Beijing Informat Sci & Technol Univ, Sch Automat, Beijing 100192, Peoples R China
[4] Beijing Inst Technol, Sch Informat & Elect, Beijing 100081, Peoples R China
[5] Beijing Key Lab Fract Signals & Syst, Beijing 100081, Peoples R China
[6] Mississippi State Univ, Dept Elect & Comp Engn, Starkville, MS 39762 USA
[7] Univ Grenoble Alpes, Grenoble INP, INRIA, LJK,CNRS, F-38000 Grenoble, France
[8] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2021年 / 59卷 / 09期
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Tensors; Spatial resolution; Degradation; Hyperspectral imaging; Image restoration; Interpolation; Clustering algorithms; Data fusion; hyperspectral imagery (HSI); low-rank tensor; DECOMPOSITION; SPARSE; SUPERRESOLUTION;
D O I
10.1109/TGRS.2020.3049014
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Tensor-based fusion that couples the high spatial resolution of a multispectral image (MSI) to the high spectral resolution of a hyperspectral image (HSI) is considered. The fusion problem is first formulated mathematically as a convex optimization of a tensor trace norm imposing low-rank spatially as well as spectrally, with an alternating-directions optimization featuring linearization providing the solution. Although prior tensor-based fusion approaches typically resort to tensor decomposition, the proposed algorithm exploits ideas from the field of tensor completion to directly impose a low-rank property spatially and spectrally while avoiding the computationally complex patch clustering and dictionary learning common to competing fusion techniques. Additionally, small modifications to the basic optimization permit a fusion process robust to missing hyperspectral values such as those that can result from dead stripes in real hyperspectral sensors. The experimental evaluations on both synthetic imagery as well as real imagery demonstrate that the resulting low-rank tensor-approximation (LRTA) fusion algorithm preserves both spatial details and texture, yielding significantly improved image quality when compared to other state-of-the-art fusion methods as well as effective restoration under conditions of missing stripes within the HSI.
引用
收藏
页码:7817 / 7830
页数:14
相关论文
共 40 条
[21]   A MAP-Based Algorithm for Destriping and Inpainting of Remotely Sensed Images [J].
Shen, Huanfeng ;
Zhang, Liangpei .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2009, 47 (05) :1490-1500
[22]   Tensor Versus Matrix Completion: A Comparison With Application to Spectral Data [J].
Signoretto, Marco ;
Van de Plas, Raf ;
De Moor, Bart ;
Suykens, Johan A. K. .
IEEE SIGNAL PROCESSING LETTERS, 2011, 18 (07) :403-406
[23]   A Convex Formulation for Hyperspectral Image Superresolution via Subspace-Based Regularization [J].
Simoes, Miguel ;
Bioucas-Dias, Jose ;
Almeida, Luis B. ;
Chanussot, Jocelyn .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (06) :3373-3388
[24]   Hyperspectral Super-Resolution of Locally Low Rank Images From Complementary Multisource Data [J].
Veganzones, Miguel A. ;
Simoes, Miguel ;
Licciardi, Giorgio ;
Yokoya, Naoto ;
Bioucas-Dias, Jose M. ;
Chanussot, Jocelyn .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (01) :274-288
[25]  
Wald L, 2002, DATA FUSION DEFINITI
[26]   Hyperspectral Image Restoration Via Total Variation Regularized Low-Rank Tensor Decomposition [J].
Wang, Yao ;
Peng, Jiangjun ;
Zhao, Qian ;
Leung, Yee ;
Zhao, Xi-Le ;
Meng, Deyu .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2018, 11 (04) :1227-1243
[27]   Image quality assessment: From error visibility to structural similarity [J].
Wang, Z ;
Bovik, AC ;
Sheikh, HR ;
Simoncelli, EP .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2004, 13 (04) :600-612
[28]   A universal image quality index [J].
Wang, Z ;
Bovik, AC .
IEEE SIGNAL PROCESSING LETTERS, 2002, 9 (03) :81-84
[29]   Hyperspectral Image Superresolution Using Unidirectional Total Variation With Tucker Decomposition [J].
Xu, Ting ;
Huang, Ting-Zhu ;
Deng, Liang-Jian ;
Zhao, Xi-Le ;
Huang, Jie .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 :4381-4398
[30]   Nonlocal Coupled Tensor CP Decomposition for Hyperspectral and Multispectral Image Fusion [J].
Xu, Yang ;
Wu, Zebin ;
Chanussot, Jocelyn ;
Comon, Pierre ;
Wei, Zhihui .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (01) :348-362