Evaluation of a Data-Driven, Machine Learning Approach for Identifying Potential Candidates for Environmental Catalysts: From Database Development to Prediction

被引:11
|
作者
Chen, Yulong [1 ]
Li, Rong [1 ]
Suo, Hongri [1 ]
Liu, Chongxuan [1 ]
机构
[1] Southern Univ Sci & Technol, State Environm Protect Key Lab Integrated Surface, Sch Environm Sci & Engn, Shenzhen 518055, Peoples R China
来源
ACS ES&T ENGINEERING | 2021年 / 1卷 / 08期
关键词
Environmental catalysts; Machine learning; Ensemble artificial neural network; Selective catalytic reduction; MATERIALS DISCOVERY; EFFICIENT CATALYST; NEURAL-NETWORK; MIXED OXIDES; SCR REACTION; REDUCTION; NH3; NOX; MECHANISM; PERFORMANCE;
D O I
10.1021/acsestengg.1c00125
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Data-driven, machine learning approaches are increasingly used for the discovery and development of catalytic materials in the area of material science and engineering. In this paper, the approach was evaluated with respect to its applicability in identifying potential environmental catalysts (ECs) using the selective catalytic reduction (SCR) of the air pollutant NOx as an example. The detailed procedures including database assemblage, the training and testing of a machine learning model, the validation and prediction of the model, and model uncertainties are all provided. The results indicated that there is a significant amount of data accumulated in environmental catalysts that can be exploited for accelerating the exploration and optimization of ECs for specific applications. The results also indicated that the approach is powerful for identifying new ECs and optimizing conditions for ECs synthesis and applications. However, the reported data in the literature are often incomplete, which limits the application potentials of the data. With limited data, the simulated results from the model contained uncertainties, especially in the prediction of unknown ECs. Repeated predictions and ensemble averaging were then proposed as an approach to find conditions for synthesizing and applying promising ECs.
引用
收藏
页码:1246 / 1257
页数:12
相关论文
共 50 条
  • [1] Prediction of casing damage: A data-driven, machine learning approach
    Zhao Y.
    Jiang H.
    Li H.
    International Journal of Circuits, Systems and Signal Processing, 2020, 14 : 1047 - 1053
  • [2] The Prediction of Flight Delay: Big Data-driven Machine Learning Approach
    Huo, Jiage
    Keung, K. L.
    Lee, C. K. M.
    Ng, Kam K. H.
    Li, K. C.
    2020 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT (IEEE IEEM), 2020, : 190 - 194
  • [3] Data-driven models in machine learning for crime prediction
    Wawrzyniak, Zbigniew M.
    Jankowski, Stanislaw
    Szczechla, Eliza
    Szymanski, Zbigniew
    Pytlak, Radoslaw
    Michalak, Pawel
    Borowik, Grzegorz
    2018 26TH INTERNATIONAL CONFERENCE ON SYSTEMS ENGINEERING (ICSENG 2018), 2018,
  • [4] Data-driven quality prediction in injection molding: An autoencoder and machine learning approach
    Ke, Kun-Cheng
    Wang, Jui-Chih
    Nian, Shih-Chih
    POLYMER ENGINEERING AND SCIENCE, 2024, 64 (09) : 4520 - 4538
  • [5] A Data-Driven Machine Learning Approach for Turbulent Flow Field Prediction Based on Direct Computational Fluid Dynamics Database
    Nemati, M.
    Jahangirian, A.
    JOURNAL OF APPLIED FLUID MECHANICS, 2024, 17 (01) : 60 - 74
  • [6] Development of Data-Driven Machine Learning Models for the Prediction of Casting Surface Defects
    Chen, Shikun
    Kaufmann, Tim
    METALS, 2022, 12 (01)
  • [7] Environmental and Human Data-Driven Model Based on Machine Learning for Prediction of Human Comfort
    Mao, Fubing
    Zhou, Xin
    Song, Ying
    IEEE ACCESS, 2019, 7 : 132909 - 132922
  • [8] Application of Data Science and Machine Learning in the Prediction of College Dropout: A Data-Driven Predictive Approach
    Felix Jimenez, Axel Frederick
    Sanchez Lee, Vania Stephany
    Ibarra Belmonte, Isaul
    Parra Gonzalez, Ezra Federico
    2023 12TH INTERNATIONAL CONFERENCE ON SOFTWARE PROCESS IMPROVEMENT, CIMPS 2023, 2023, : 234 - 243
  • [9] Machine learning based prediction of biogas generation from municipal solid waste: A data-driven approach
    Singh, Deval
    Tembhare, Mamta
    Pundalik, Kundeshwar
    Dikshit, Anil Kumar
    Kumar, Sunil
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2024, 192 : 93 - 103
  • [10] Data-Driven MMA Outcome Prediction Enhanced by Fighter Styles: A Machine Learning Approach
    Yin, Jiajie
    2024 4TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND INTELLIGENT SYSTEMS ENGINEERING, MLISE 2024, 2024, : 346 - 351