Bimodal grain size structure design to optimize the mechanical properties of TiZrNbTa high entropy alloys/Ti composites

被引:24
作者
Xiang, Tao [1 ]
Du, Peng [1 ]
Bao, Weizong [1 ]
Cai, Zeyun [1 ]
Li, Kun [1 ]
Xie, Guoqiang [1 ,2 ]
机构
[1] Harbin Inst Technol Shenzhen, Sch Mat Sci & Engn, Shenzhen 518055, Peoples R China
[2] Harbin Inst Technol, State Key Lab Adv Welding & Joining, Harbin 150001, Peoples R China
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2022年 / 849卷
基金
中国国家自然科学基金;
关键词
TiZrNbTa high-Entropy alloys; Pure Ti matrix; Bimodal grain size distribution; Mechanical properties; 316L STAINLESS-STEEL; HIGH-STRENGTH; MICROSTRUCTURE; TENSILE; BEHAVIOR; FABRICATION; DEPENDENCE;
D O I
10.1016/j.msea.2022.143488
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Grain refinement is perfectly efficient for improving strength, but accompanies by a dramatic loss of ductility. Here we report a bimodal grain size structure design by inducing ultra-high strength TiZrNbTa high entropy alloy (HEA) with nanoscale grain size into pure Ti with coarse grain size to achieve the strength-strain balance by establishing bimodal grain size distribution (BGSD). Through optimizing the TiZrNbTa HEA content, the 60 wt.% TiZrNbTa/Ti titanium matrix composite (TMC) exhibits a yield strength of 1426 +/- 30 MPa, ultimate compressive strength of 2133 +/- 88 MPa, and an acceptable compressive strain of 22.3% +/- 1.8%, respectively. The compressive yield strength of 60 wt.% TiZrNbTa/Ti TMC is 3.6-fold for c.p. Ti (393.0 +/- 7.1 MPa). The unusual high strength is attributed to the nanoscale grain size provided by TiZrNbTa HEA, and the acceptable compressive strain is obtained from the co-effect of coarse grain Ti and TiZrNbTa HEA. The excellent mechanical properties of 60 wt.% TiZrNbTa/Ti TMC undoubtedly greatly increase the possibility of its application as an orthopedic implant in the biomedical field.
引用
收藏
页数:9
相关论文
共 42 条
[1]   Tensile and fracture behavior of nano/micro TiB2 particle reinforced casting A356 aluminum alloy composites [J].
Akbari, M. Karbalaei ;
Baharvandi, H. R. ;
Shirvanimoghaddam, K. .
MATERIALS & DESIGN, 2015, 66 :150-161
[2]   Novel TiB2-reinforced 316L stainless steel nanocomposites with excellent room- and high-temperature yield strength developed by additive manufacturing [J].
AlMangour, Bandar ;
Kim, Young-Kyun ;
Grzesiak, Dariusz ;
Lee, Kee-Ahn .
COMPOSITES PART B-ENGINEERING, 2019, 156 :51-63
[3]   Strengthening of stainless steel by titanium carbide addition and grain refinement during selective laser melting [J].
AlMangour, Bandar ;
Baek, Min-Seok ;
Grzesiak, Dariusz ;
Lee, Kee-Ahn .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2018, 712 :812-818
[4]  
Ashby M., 2007, Materials: Engineering, Science, Processing and Design, VVolume 1
[5]   Enhancing strength-ductility synergy in an ex situ Zr-based metallic glass composite via nanocrystal formation within high-entropy alloy particles [J].
Ding, Huaping ;
Bao, Xiaoqian ;
Jamili-Shirvan, Zahra ;
Jin, Junsong ;
Deng, Lei ;
Yao, Kefu ;
Gong, Pan ;
Wang, Xinyun .
MATERIALS & DESIGN, 2021, 210
[6]   Tensile properties of spark plasma sintered AISI 316L stainless steel with unimodal and bimodal grain size distributions [J].
Flipon, B. ;
Keller, C. ;
de la Cruz, L. Garcia ;
Hug, E. ;
Barbe, F. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2018, 729 :249-256
[7]   Ti based biomaterials, the ultimate choice for orthopaedic implants - A review [J].
Geetha, M. ;
Singh, A. K. ;
Asokamani, R. ;
Gogia, A. K. .
PROGRESS IN MATERIALS SCIENCE, 2009, 54 (03) :397-425
[8]   Microstructural and magnetic behavior of an equiatomic NiCoAlFe alloy prepared by mechanical alloying [J].
Gomez-Esparza, C. D. ;
Baldenebro-Lopez, F. J. ;
Santillan-Rodriguez, C. R. ;
Estrada-Guel, I. ;
Matutes-Aquino, J. A. ;
Herrera-Ramirez, J. M. ;
Martinez-Sanchez, R. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 615 :S317-S323
[9]   Microstructure and hardness of NbTiZr and NbTaTiZr refractory medium-entropy alloy coatings on Zr alloy by laser cladding [J].
Guan, Haotian ;
Chai, Linjiang ;
Wang, Yueyuan ;
Xiang, Kang ;
Wu, Lu ;
Pan, Hucheng ;
Yang, Mingbo ;
Teng, Changqing ;
Zhang, Wei .
APPLIED SURFACE SCIENCE, 2021, 549
[10]   Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys [J].
Guo, Sheng ;
Ng, Chun ;
Lu, Jian ;
Liu, C. T. .
JOURNAL OF APPLIED PHYSICS, 2011, 109 (10)