Growth optimization for self-catalyzed GaAs-based nanowires on metal-induced crystallized amorphous substrate

被引:6
作者
Ren, Dingding [1 ]
Hoiaas, Ida M. [1 ]
Reinertsen, Johannes F. [1 ]
Dheeraj, Dasa L. [2 ]
Munshi, A. Mazid [2 ]
Kim, Dong-Chul [1 ,2 ]
Weman, Helge [1 ,2 ]
Fimland, Bjorn-Ove [1 ,2 ]
机构
[1] Norwegian Univ Sci & Technol NTNU, Dept Elect & Telecommun, NO-7491 Trondheim, Norway
[2] CrayoNano AS, Otto Nielsens Vei 12, NO-7052 Trondheim, Norway
来源
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B | 2016年 / 34卷 / 02期
关键词
DER-WAALS EPITAXY; LAYER GRAPHENE; SOLAR-CELLS; GRAPHITE; SILICON; SIOX;
D O I
10.1116/1.4943926
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The growth of monocrystalline semiconductor nanowires on arbitrary substrates via the metal-induced crystallization (MIC) process extends the possible combinations of substrates and epitaxial active materials. However, it is still difficult to accomplish high-density vertical nanowire growth on the MIC polycrystalline Si(111) substrate. Here, the authors report on the growth of self-catalyzed GaAs nanowires by molecular beam epitaxy on MIC polycrystalline Si(111) substrates with different surface oxide conditions. Forming the surface oxide by annealing the freshly hydrofluoric acid-etched MIC polycrystalline Si(111) substrate in an ambient atmosphere is found to be a key step to grow high-density GaAs nanowires. Moreover, the addition of Sb during nanowire growth improves the density of vertical nanowires. Photoluminescence measurements reveal a high optical quality of the GaAs nanowires, indicating that the nanowires grown on MIC polycrystalline Si(111) substrate may be used as building blocks for semiconductor nanowire optoelectronic devices on arbitrary substrates. (C) 2016 American Vacuum Society.
引用
收藏
页数:6
相关论文
共 27 条
  • [1] Self-catalyzed GaAs nanowire growth on Si-treated GaAs(100) substrates
    Ambrosini, S.
    Fanetti, M.
    Grillo, V.
    Franciosi, A.
    Rubini, S.
    [J]. JOURNAL OF APPLIED PHYSICS, 2011, 109 (09)
  • [2] Realization of Vertically Aligned, Ultrahigh Aspect Ratio InAsSb Nanowires on Graphite
    Anyebe, E. A.
    Sanchez, A. M.
    Hindmarsh, S.
    Chen, X.
    Shao, J.
    Rajpalke, M. K.
    Veal, T. D.
    Robinson, B. J.
    Kolosoy, O.
    Anderson, F.
    Sundaram, R.
    Wang, Z. M.
    Falko, V.
    Zhuang, Q.
    [J]. NANO LETTERS, 2015, 15 (07) : 4348 - 4355
  • [3] Growth of Vertical GaAs Nanowires on an Amorphous Substrate via a Fiber-Textured Si Platform
    Cohin, Yann
    Mauguin, Olivia
    Largeau, Ludovic
    Patriarche, Gilles
    Glas, Frank
    Sondergard, Elin
    Harmand, Jean-Christophe
    [J]. NANO LETTERS, 2013, 13 (06) : 2743 - 2747
  • [4] Ga-assisted catalyst-free growth mechanism of GaAs nanowires by molecular beam epitaxy
    Colombo, C.
    Spirkoska, D.
    Frimmer, M.
    Abstreiter, G.
    Morral, A. Fontcuberta I.
    [J]. PHYSICAL REVIEW B, 2008, 77 (15):
  • [5] Critical dimensions for the plastic relaxation of strained axial heterostructures in free-standing nanowires
    Glas, Frank
    [J]. PHYSICAL REVIEW B, 2006, 74 (12)
  • [6] Predictive modeling of self-catalyzed III-V nanowire growth
    Glas, Frank
    Ramdani, Mohammed Reda
    Patriarche, Gilles
    Harmand, Jean-Christophe
    [J]. PHYSICAL REVIEW B, 2013, 88 (19)
  • [7] van der Waals Epitaxy of InAs Nanowires Vertically Aligned on Single-Layer Graphene
    Hong, Young Joon
    Lee, Wi Hyoung
    Wu, Yaping
    Ruoff, Rodney S.
    Fukui, Takashi
    [J]. NANO LETTERS, 2012, 12 (03) : 1431 - 1436
  • [8] Electron Mobilities Approaching Bulk Limits in "Surface-Free" GaAs Nanowires
    Joyce, Hannah J.
    Parkinson, Patrick
    Jiang, Nian
    Docherty, Callum J.
    Gao, Qiang
    Tan, H. Hoe
    Jagadish, Chennupati
    Herz, Laura M.
    Johnston, Michael B.
    [J]. NANO LETTERS, 2014, 14 (10) : 5989 - 5994
  • [10] Krogstrup P, 2013, NAT PHOTONICS, V7, P306, DOI [10.1038/nphoton.2013.32, 10.1038/NPHOTON.2013.32]