Enhancing chaoticity of spatiotemporal chaos

被引:7
作者
Li, XW
Zhang, HQ
Xue, Y
Hu, G
机构
[1] CCAST, World Lab, Beijing 100080, Peoples R China
[2] Beijing Normal Univ, Dept Phys, Beijing 100875, Peoples R China
[3] Guangxi Univ, Dept Phys, Nanning 530003, Peoples R China
[4] Beijing Normal Univ, Minist Educ, Key Lab Beam Technol & Mat Modificat, Beijing 100875, Peoples R China
来源
PHYSICAL REVIEW E | 2005年 / 71卷 / 01期
关键词
D O I
10.1103/PhysRevE.71.016216
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In some practical situations strong chaos is needed. This introduces the task of chaos control with enhancing chaoticity rather than suppressing chaoticity. In this paper a simple method of linear amplifications incorporating modulo operations is suggested to make spatiotemporal systems, which may be originally chaotic or nonchaotic, strongly chaotic. Specifically, this control can eliminate periodic windows, increase the values and the number of positive Lyapunov exponents, make the probability distributions of the output chaotic sequences more homogeneous, and reduce the correlations of chaotic outputs for different times and different space units. The applicability of the method to practical tasks, in particular to random number generators and secure communications, is briefly discussed.
引用
收藏
页数:7
相关论文
共 33 条
[1]   THE ONSET AND SPATIAL DEVELOPMENT OF TURBULENCE IN FLOW SYSTEMS [J].
ARANSON, IS ;
GAPONOVGREKHOV, AV ;
RABINOVICH, MI .
PHYSICA D, 1988, 33 (1-3) :1-20
[2]   Robust chaos [J].
Banerjee, S ;
Yorke, JA ;
Grebogi, C .
PHYSICAL REVIEW LETTERS, 1998, 80 (14) :3049-3052
[3]  
CHEN G, 1998, FROM CHAOS TO ORDER
[4]   CIRCUIT IMPLEMENTATION OF SYNCHRONIZED CHAOS WITH APPLICATIONS TO COMMUNICATIONS [J].
CUOMO, KM ;
OPPENHEIM, AV .
PHYSICAL REVIEW LETTERS, 1993, 71 (01) :65-68
[5]   TURBULENT BURSTS, SPOTS AND SLUGS IN A GENERALIZED GINZBURG-LANDAU EQUATION [J].
DEISSLER, RJ .
PHYSICS LETTERS A, 1987, 120 (07) :334-340
[6]   SPATIALLY GROWING WAVES, INTERMITTENCY, AND CONVECTIVE CHAOS IN AN OPEN-FLOW SYSTEM [J].
DEISSLER, RJ .
PHYSICA D, 1987, 25 (1-3) :233-260
[7]   VELOCITY-DEPENDENT LYAPUNOV EXPONENTS AS A MEASURE OF CHAOS FOR OPEN-FLOW SYSTEMS [J].
DEISSLER, RJ ;
KANEKO, K .
PHYSICS LETTERS A, 1987, 119 (08) :397-402
[8]   EXPERIMENTAL CONTROL OF CHAOS [J].
DITTO, WL ;
RAUSEO, SN ;
SPANO, ML .
PHYSICAL REVIEW LETTERS, 1990, 65 (26) :3211-3214
[9]   CONTROLLING CHAOS USING TIME-DELAY COORDINATES [J].
DRESSLER, U ;
NITSCHE, G .
PHYSICAL REVIEW LETTERS, 1992, 68 (01) :1-4
[10]   Enhancing chaos in chaotic maps and flows [J].
Gupte, N ;
Amritkar, RE .
PHYSICAL REVIEW E, 1996, 54 (05) :4580-4585