Inequalities for eigenvalues of elliptic operators in divergence form on Riemannian manifolds

被引:28
作者
do Carmo, Manfredo P. [2 ]
Wang, Qiaoling [1 ]
Xia, Changyu [1 ]
机构
[1] Univ Brasilia, Dept Matemat, BR-70910900 Brasilia, DF, Brazil
[2] Inst Matematica Pura & Aplicada, BR-2246032 Rio De Janeiro, Brazil
关键词
Universal bounds; Eigenvalues; Elliptic operator; Payne-Polya-Weinberger-Yang type inequalities; Submanifolds; Hypersurfaces in space forms; Warped manifolds; MEAN-CURVATURE; 1ST EIGENVALUE; UPPER-BOUNDS; LAPLACIAN; HYPERSURFACES; STABILITY; SPACES; GAPS;
D O I
10.1007/s10231-010-0129-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study eigenvalues of elliptic operators in divergence form on compact Riemannian manifolds with boundary (possibly empty) and obtain a general inequality for them. By using this inequality, we prove universal inequalities for eigenvalues of elliptic operators in divergence form on compact domains of complete submanifolds in a Euclidean space, and of complete manifolds admitting special functions which include the Hadamard manifolds with Ricci curvature bounded below, a class of warped product manifolds, the product of Euclidean spaces with any complete manifold and manifolds admitting eigenmaps to a sphere.
引用
收藏
页码:643 / 660
页数:18
相关论文
共 32 条
[1]  
Alencar H, 2003, J REINE ANGEW MATH, V554, P201
[2]   Upper bounds for the first eigenvalue of the operator Lr and some applications [J].
Alencar, H ;
Do Carmo, M ;
Marques, F .
ILLINOIS JOURNAL OF MATHEMATICS, 2001, 45 (03) :851-863
[3]  
Alencar H., 1993, Ann. Glob. Anal. Geom, V11, P387, DOI [10.1007/BF00773553, DOI 10.1007/BF00773553]
[4]  
Alías LJ, 2004, ILLINOIS J MATH, V48, P219, DOI 10.1215/ijm/1258136182
[5]  
[Anonymous], LONDON MATH SOC LECT
[6]   A unified approach to universal inequalities for eigenvalues of elliptic operators [J].
Ashbaugh, MS ;
Hermi, L .
PACIFIC JOURNAL OF MATHEMATICS, 2004, 217 (02) :201-219
[7]   The universal eigenvalue bounds of Payne-Polya-Weinberger, Hile-Protter, and H C Yang [J].
Ashbaugh, MS .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2002, 112 (01) :3-30
[8]  
Barbosa JLM, 1997, ANN GLOB ANAL GEOM, V15, P277
[9]   Extrinsic estimates for eigenvalues of the Laplace operator [J].
Chen, Daguang ;
Cheng, Qing-Ming .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2008, 60 (02) :325-339
[10]   Bounds on eigenvalues of Dirichlet Laplacian [J].
Cheng, Qing-Ming ;
Yang, Hongcang .
MATHEMATISCHE ANNALEN, 2007, 337 (01) :159-175