Non-uniform temperature distribution in Li-ion batteries during discharge - A combined thermal imaging, X-ray micro-tomography and electrochemical impedance approach

被引:130
作者
Robinson, James B. [1 ]
Darr, Jawwad A. [2 ]
Eastwood, David S. [3 ]
Hinds, Gareth [4 ]
Lee, Peter D. [3 ]
Shearing, Paul R. [1 ]
Taiwo, Oluwadamilola O. [1 ]
Brett, Dan J. L. [1 ]
机构
[1] UCL, Dept Chem Engn, Electrochem Innovat Lab, London WC1E 7JE, England
[2] UCL, Dept Chem, London WC1H 0AJ, England
[3] Univ Manchester, Sch Mat, Manchester Xray Imaging Facil, Manchester M13 9PL, Lancs, England
[4] Natl Phys Lab, Teddington TW11 0LW, Middx, England
基金
英国工程与自然科学研究理事会;
关键词
Positive temperature coefficient; Thermal imaging; Infrared thermography; Temperature distribution; X-ray tomography; 18650; Battery; CELL; ELECTRODE;
D O I
10.1016/j.jpowsour.2013.11.059
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Thermal runaway is a major cause of failure in Li-ion batteries (LIBs), and of particular concern for high energy density transport applications, where safety concerns have hampered commercialisation. A clear understanding of electro-thermal properties and how these relate to structure and operation is vital to improving thermal management of LIBs. Here a combined thermal imaging, X-ray tomography and electrochemical impedance spectroscopy (EIS) approach was applied to commercially available 18650 cells to study their thermal characteristics. Thermal imaging was used to characterise heterogeneous temperature distributions during discharge above 0.75C; the complementary information provided by 3D X-ray tomography was utilised to evaluate the internal structure of the battery and identify the regions causing heating, specifically the components of the battery cap. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:51 / 57
页数:7
相关论文
共 26 条
[1]   Safety mechanisms in lithium-ion batteries [J].
Balakrishnan, PG ;
Ramesh, R ;
Kumar, TP .
JOURNAL OF POWER SOURCES, 2006, 155 (02) :401-414
[2]   A Critical Review of Thermal Issues in Lithium-Ion Batteries [J].
Bandhauer, Todd M. ;
Garimella, Srinivas ;
Fuller, Thomas F. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (03) :R1-R25
[3]  
Beauregard G.P., 2008, REPORT INVESTIGATION
[4]   Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery [J].
Forgez, Christophe ;
Do, Dinh Vinh ;
Friedrich, Guy ;
Morcrette, Mathieu ;
Delacourt, Charles .
JOURNAL OF POWER SOURCES, 2010, 195 (09) :2961-2968
[5]   Thermal runaway potential of LiCoO2 and Li(Ni1/3Co1/3Mn1/3)O2 batteries determined with adiabatic calorimetry methodology [J].
Jhu, Can-Yong ;
Wang, Yih-Wen ;
Wen, Chia-Yuan ;
Shu, Chi-Min .
APPLIED ENERGY, 2012, 100 :127-131
[6]   Li-Ion Cell Operation at Low Temperatures [J].
Ji, Yan ;
Zhang, Yancheng ;
Wang, Chao-Yang .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (04) :A636-A649
[7]   Thermal analyses of LiFePO4/graphite battery discharge processes [J].
Jiang, Fangming ;
Peng, Peng ;
Sun, Yiqiong .
JOURNAL OF POWER SOURCES, 2013, 243 :181-194
[8]   Effect of electrode configuration on the thermal behavior of a lithium-polymer battery [J].
Kim, Ui Seong ;
Shin, Chee Burm ;
Kim, Chi-Su .
JOURNAL OF POWER SOURCES, 2008, 180 (02) :909-916
[9]   Modeling for the scale-up of a lithium-ion polymer battery [J].
Kim, Ui Seong ;
Shin, Chee Burm ;
Kim, Chi-Su .
JOURNAL OF POWER SOURCES, 2009, 189 (01) :841-846
[10]   Two- and three-electrode impedance studies on 18650 Li-ion cells [J].
Nagasubramanian, G .
JOURNAL OF POWER SOURCES, 2000, 87 (1-2) :226-229