Characterization and optimization of pH-responsive polymer nanoparticles for drug delivery to oral biofilms

被引:67
|
作者
Zhou, Jiayi [1 ]
Horev, Benjamin [1 ]
Hwang, Geelsu [2 ]
Klein, Marlise I. [3 ]
Koo, Hyun [2 ,4 ,5 ,6 ]
Benoit, Danielle S. W. [1 ,7 ,8 ]
机构
[1] Univ Rochester, Dept Biomed Engn, Rochester, NY USA
[2] Univ Penn, Sch Dent Med, Levy Ctr Oral Hlth, Biofilm Res Lab, Philadelphia, PA 19104 USA
[3] Univ Estadual Paulista, UNESP, Araraquara Dent Sch, Dept Dent Mat & Prosthodont, Sao Paulo, Brazil
[4] Univ Penn, Sch Dent Med, Dept Orthodont, Philadelphia, PA 19104 USA
[5] Univ Penn, Sch Dent Med, Div Pediat Dent, Philadelphia, PA 19104 USA
[6] Univ Penn, Sch Dent Med, Div Community Oral Hlth, Philadelphia, PA 19104 USA
[7] Univ Rochester, Dept Chem Engn, Rochester, NY 14627 USA
[8] Univ Rochester, Med Ctr, Ctr Musculoskeletal Res, Rochester, NY 14642 USA
基金
美国国家科学基金会;
关键词
OVARIAN-CANCER CELLS; STREPTOCOCCUS-MUTANS; IN-VIVO; DIBLOCK COPOLYMER; SIRNA DELIVERY; GENE DELIVERY; TT-FARNESOL; HYDROXYAPATITE; MICELLES; STABILITY;
D O I
10.1039/c5tb02054a
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
We previously reported on cationic, pH-responsive p(DMAEMA)-b-p(DMAEMA-co-BMA-co-PAA) block copolymer micelles with high affinity for dental and biofilm surfaces and efficient anti-bacterial drug release in response to acidic pH, characteristic of cariogenic (tooth-decay causing) biofilm microenvironments. Here, we show that micelle pH-responsive behaviors can be enhanced through alterations in corona : core molecular weight ratios (CCR). Although similarly stable at physiological pH, upon exposure to acidic pH, micelles with CCR of 4.1 exhibited more robust drug release than other CCR examined. Specifically, a similar to 1.5-fold increase in critical micelle concentration (CMC) and similar to 50% decrease in micelle diameters were observed for micelles with CCR of 4.1, compared to no changes in micelles with CCR of 0.8. While high CCR was shown to enhance pH-responsive drug release, it did not alter drug loading and dental surface binding of micelles. Diblocks were shown to encapsulate the antibacterial drug, farnesol, at maximal loading capacities of up to similar to 27 wt% and at >94% efficiencies, independent of CCR or core size, resulting in micelle diameter increases due to contributions of drug volume. Additionally, micelles with small diameters (similar to 17 nm) show high binding capacity to hydroxyapatite and dental pellicle emulating surfaces based on Langmuir fit analyses of binding data. Finally, micelles with high CCR that have enhanced pH-responsive drug release and binding were shown to exhibit greater antibiofilm efficacy in situ. Overall, these data demonstrate how factors essential for nanoparticle carrier (NPC)-mediated drug delivery can be enhanced via modification of diblock characteristics, resulting in greater antibiofilm efficacy in situ.
引用
收藏
页码:3075 / 3085
页数:11
相关论文
共 50 条
  • [31] Hollow Nanoparticles Prepared From pH-Responsive Template Polymer Micelles
    Inoue, Masamichi
    Noda, Kyohei
    Yusa, Shin-ichi
    JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2012, 50 (13) : 2596 - 2603
  • [32] Catechol Polymers for pH-Responsive, Targeted Drug Delivery to Cancer Cells
    Su, Jing
    Chen, Feng
    Cryns, Vincent L.
    Messersmith, Phillip B.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (31) : 11850 - 11853
  • [33] pH-Responsive Poly(Ethylene Glycol)-block-Polylactide Micelles for Tumor-Targeted Drug Delivery
    Xiao, Lin
    Huang, Lixia
    Moingeon, Firmin
    Gauthier, Mario
    Yang, Guang
    BIOMACROMOLECULES, 2017, 18 (09) : 2711 - 2722
  • [34] Mechanisms and biomaterials in pH-responsive tumour targeted drug delivery: A review
    Kanamala, Manju
    Wilson, William R.
    Yang, Mimi
    Palmer, Brian D.
    Wu, Zimei
    BIOMATERIALS, 2016, 85 : 152 - 167
  • [35] Advancements in pH-responsive nanocarriers: enhancing drug delivery for tumor therapy
    Chen, Zhouyun
    Wang, Xiaoxiao
    Zhao, Na
    Chen, Haifeng
    Guo, Gang
    EXPERT OPINION ON DRUG DELIVERY, 2023, : 1623 - 1642
  • [36] Highly effective photothermal chemotherapy with pH-responsive polymer-coated drug-loaded melanin-like nanoparticles
    Zhang, Chengwei
    Zhao, Xiaozhi
    Guo, Suhan
    Lin, Tingsheng
    Guo, Hongqian
    INTERNATIONAL JOURNAL OF NANOMEDICINE, 2017, 12 : 1827 - 1840
  • [37] Design, preparation and characterization of pH-responsive prodrug micelles with hydrolyzable anhydride linkages for controlled drug delivery
    Seetharaman, Girija
    Kallar, Adarsh R.
    Vijayan, Vineeth M.
    Muthu, Jayabalan
    Selvam, Shivaram
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2017, 492 : 61 - 72
  • [38] A pH-responsive polymer based on dynamic imine bonds as a drug delivery material with pseudo target release behavior
    Tao, Yangchun
    Liu, Siwei
    Zhang, Yi
    Chi, Zhenguo
    Xu, Jiarui
    POLYMER CHEMISTRY, 2018, 9 (07) : 878 - 884
  • [39] Preparation and Characterization of pH-Responsive Charge Reversal Nanocomposite for miRNA Delivery
    Yu, Dan
    Ye, Liyuan
    Li, Binbin
    Mou, Fangzhi
    Yin, Yixia
    JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION, 2024, 39 (04): : 1048 - 1052
  • [40] A pH-Responsive System Based on Fluorescence Enhanced Gold Nanoparticles for Renal Targeting Drug Delivery and Fibrosis Therapy
    Lai, Xuandi
    Geng, Xinran
    Tan, Lishan
    Hu, Jianqiang
    Wang, Shubin
    INTERNATIONAL JOURNAL OF NANOMEDICINE, 2020, 15 : 5613 - 5627