Exponentially fitted Runge-Kutta methods

被引:0
|
作者
Vanden Berghe, G [1 ]
De Meyer, H [1 ]
Van Daele, M [1 ]
Van Hecke, T [1 ]
机构
[1] State Univ Ghent, Dept Appl Math & Comp Sci, B-9000 Ghent, Belgium
关键词
Runge-Kutta method; exponential fitting; ordinary differential equations;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Exponentially fitted Runge-Kutta methods with s stages are constructed, which exactly integrate differential initial-value problems whose solutions are linear combinations of functions of the form {x(j) exp(omegax),x(j) exp(-omegax)}, to (omega is an element of R or iR, j = 0, 1,...,j max), where 0 less than or equal to j max less than or equal to [s/2 - 1], the lower bound being related to explicit methods, the upper bound applicable for collocation methods. Explicit methods with s is an element of {2,3,4} belonging to that class are constructed. For these methods, a study of the local truncation error is made, out of which follows a simple heuristic to estimate the omega -value. Error and step length control is introduced based on Richardson extrapolation ideas. Some numerical experiments show the efficiency of the introduced methods. It is shown that the same techniques can be applied to construct implicit exponentially fitted Runge-Kutta methods. (C) 2000 Elsevier Science B.V. All rights reserved. MSG: 65L05; 65L06; 65L20.
引用
收藏
页码:107 / 115
页数:9
相关论文
共 50 条
  • [21] Embedded Pairs of Exponentially Fitted Explicit Runge-Kutta Methods for the Numerical Integration of Oscillatory Problems
    Paris, A.
    Randez, L.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, 2008, 1048 : 1008 - 1010
  • [22] Exponentially fitted explicit Runge-Kutta-Nystrom methods
    Franco, JM
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 167 (01) : 1 - 19
  • [23] Exponentially Fitted Symplectic Runge-Kutta-Nystrom methods
    Monovasilis, Th.
    Kalogiratou, Z.
    Simos, T. E.
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2013, 7 (01): : 81 - 85
  • [24] Revised exponentially fitted Runge-Kutta-Nystrom methods
    D'Ambrosio, R.
    Paternoster, B.
    Santomauro, G.
    APPLIED MATHEMATICS LETTERS, 2014, 30 : 56 - 60
  • [25] Sixth-order symmetric and symplectic exponentially fitted modified Runge-Kutta methods of Gauss type
    Calvo, M.
    Franco, J. M.
    Montijano, J. I.
    Randez, L.
    COMPUTER PHYSICS COMMUNICATIONS, 2008, 178 (10) : 732 - 744
  • [26] Exponentially fitted Runge-Kutta fourth algebraic order methods for the numerical solution of the Schrodinger equation and related problems
    Williams, PS
    Simos, TE
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2000, 11 (04): : 785 - 807
  • [27] Trigonometrically fitted Runge-Kutta methods for the numerical solution of the Schrodinger equation
    Anastassi, ZA
    Simos, TE
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2005, 37 (03) : 281 - 293
  • [28] A family of exponentially-fitted Runge-Kutta methods with exponential order up to three for the numerical solution of the Schrodinger equation
    Anastassi, Z. A.
    Simos, T. E.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2007, 41 (01) : 79 - 100
  • [29] Exponentially-fitted Runge-Kutta third algebraic order methods for the numerical solution of the Schrodinger equation and related problems
    Simos, TE
    Williams, PS
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1999, 10 (05): : 839 - 851
  • [30] Three-Stage Two-Parameter Symplectic, Symmetric Exponentially-Fitted Runge-Kutta Methods of Gauss Type
    Van Daele, M.
    Hollevoet, D.
    Berghe, G. Vanden
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 251 - 254