Global sensitivity analysis of the APSIM-Oryza rice growth model under different environmental conditions

被引:21
作者
Liu, Junzhi [1 ,2 ,3 ,4 ]
Liu, Zhangcong [1 ,3 ,4 ]
Zhu, A-Xing [1 ,3 ,4 ,5 ]
Shen, Fang [1 ,3 ,4 ]
Lei, Qiuliang [2 ]
Duan, Zheng [6 ]
机构
[1] Nanjing Normal Univ, Minist Educ, Key Lab Virtual Geog Environm, Nanjing, Jiangsu, Peoples R China
[2] Chinese Acad Agr Sci, Inst Agr Resources & Reg Planning, Minist Agr, Key Lab Nonpoint Source Pollut Control, Beijing, Peoples R China
[3] State Key Lab Cultivat Base Geog Environm Evolut, Nanjing, Jiangsu, Peoples R China
[4] Jiangsu Ctr Collaborat Innovat Geog Informat Reso, Nanjing, Jiangsu, Peoples R China
[5] Univ Wisconsin, Dept Geog, Madison, WI 53706 USA
[6] Tech Univ Munich, Chair Hydrol & River Basin Management, Munich, Germany
基金
中国国家自然科学基金;
关键词
Parameter sensitivity; Extended FAST; Range of parameter variation; Climate condition; CO2; level; CROPPING SYSTEMS; SIMULATION-MODEL; UNCERTAINTY; AUTOCALIBRATION; METHODOLOGY; PARAMETERS; AUSTRALIA; FRAMEWORK; SOFTWARE; DROUGHT;
D O I
10.1016/j.scitotenv.2018.09.254
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study conducted the global sensitivity analysis of the APSIM-Oryza rice growth model under eight climate conditions and two CO2 levels using the extended Fourier Amplitude Sensitivity Test method. Two output variables (i.e. total aboveground dry matter WAGT and dry weight of storage organs WSO) and twenty parameters were analyzed. The +/- 30% and +/- 50% perturbations of base values were used as the ranges of parameter variation, and local fertilization and irrigation managements were considered. Results showed that the influential parameters were the same under different environmental conditions, but their orders were often different. Climate conditions had obvious influence on the sensitivity index of several parameters (e.g. RGRLMX, WGRMX and SPGF). In particular, the sensitivity index of RGRLMX was larger under cold climate than under warm climate. Differences also exist for parameter sensitivity of early and late rice in the same site. The CO2 concentration did not have much influence on the results of sensitivity analysis. The range of parameter variation affected the stability of sensitivity analysis results, but the main conclusions were consistent between the results obtained from the +/- 30% perturbation and those obtained the +/- 50% perturbation in this study. Compared with existing studies, our study performed the sensitivity analysis of APSIM-Oryza under more environmental conditions, thereby providing more comprehensive insights into the model and its parameters. (c) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:953 / 968
页数:16
相关论文
共 40 条
  • [1] Simulation of crop and water productivity for rice (Oryza sativa L.) using APSIM under diverse agro-climatic conditions and water management techniques in Sri Lanka
    Amarasingha, R. P. R. K.
    Suriyagoda, L. D. B.
    Marambe, B.
    Gaydon, D. S.
    Galagedara, L. W.
    Punyawardena, R.
    Silva, G. L. L. P.
    Nidumolu, U.
    Howden, M.
    [J]. AGRICULTURAL WATER MANAGEMENT, 2015, 160 : 132 - 143
  • [2] [Anonymous], 2001, ORYZA2000: modeling lowland rice
  • [3] A methodology and an optimization tool to calibrate phenology of short-day species included in the APSIM PLANT model: Application to soybean
    Archontoulis, Sotirios V.
    Miguez, Fernando E.
    Moore, Kenneth J.
    [J]. ENVIRONMENTAL MODELLING & SOFTWARE, 2014, 62 : 465 - 477
  • [4] Description and evaluation of the rice growth model ORYZA2000 under nitrogen-limited conditions
    Bouman, BAM
    van Laar, HH
    [J]. AGRICULTURAL SYSTEMS, 2006, 87 (03) : 249 - 273
  • [5] Plant Modelling Framework: Software for building and running crop models on the APSIM platform
    Brown, Hamish E.
    Huth, Neil I.
    Holzworth, Dean P.
    Teixeira, Edmar I.
    Zyskowski, Rob F.
    Hargreaves, John N. G.
    Moot, Derrick J.
    [J]. ENVIRONMENTAL MODELLING & SOFTWARE, 2014, 62 : 385 - 398
  • [6] The role of sensitivity analysis in ecological modelling
    Cariboni, J.
    Gatelli, D.
    Liska, R.
    Saltelli, A.
    [J]. ECOLOGICAL MODELLING, 2007, 203 (1-2) : 167 - 182
  • [7] Comparison of sensitivity analysis techniques: A case study with the rice model WARM
    Confalonieri, R.
    Bellocchi, G.
    Bregaglio, S.
    Donatelli, M.
    Acutis, M.
    [J]. ECOLOGICAL MODELLING, 2010, 221 (16) : 1897 - 1906
  • [8] Sensitivity analysis of the rice model WARM in Europe: Exploring the effects of different locations, climates and methods of analysis on model sensitivity to crop parameters
    Confalonieri, Roberto
    Bellocchi, Gianni
    Tarantola, Stefano
    Acutis, Marco
    Donatelli, Marcello
    Genovese, Giampiero
    [J]. ENVIRONMENTAL MODELLING & SOFTWARE, 2010, 25 (04) : 479 - 488
  • [9] Global sensitivity and uncertainty analysis of a dynamic agroecosystem model under different irrigation treatments
    DeJonge, Kendall C.
    Ascough, James C., II
    Ahmadi, Mehdi
    Andales, Allan A.
    Arabi, Mazdak
    [J]. ECOLOGICAL MODELLING, 2012, 231 : 113 - 125
  • [10] Evaluation of the APSIM model in cropping systems of Asia
    Gaydon, D. S.
    Balwinder-Singh
    Wang, E.
    Poulton, P. L.
    Ahmad, B.
    Ahmed, F.
    Akhter, S.
    Ali, I.
    Amarasingha, R.
    Chaki, A. K.
    Chen, C.
    Choudhury, B. U.
    Darai, R.
    Das, A.
    Hochman, Z.
    Horan, H.
    Hosang, E. Y.
    Kumar, P. Vijaya
    Khan, A. S. M. M. R.
    Laing, A. M.
    Liu, L.
    Malaviachichi, M. A. P. W. K.
    Mohapatra, K. P.
    Muttaleb, M. A.
    Power, B.
    Radanielson, A. M.
    Rai, G. S.
    Rashid, M. H.
    Rathanayake, W. M. U. K.
    Sarker, M. M. R.
    Sena, D. R.
    Shamim, M.
    Subash, N.
    Suriadi, A.
    Suriyagoda, L. D. B.
    Wang, G.
    Wang, J.
    Yadav, R. K.
    Roth, C. H.
    [J]. FIELD CROPS RESEARCH, 2017, 204 : 52 - 75