An inexact smoothing method for the monotone complementarity problem over symmetric cones

被引:8
作者
Zhang, Jian [1 ]
Zhang, Kecun [1 ]
机构
[1] Xi An Jiao Tong Univ, Fac Sci, Xian 710049, Peoples R China
关键词
symmetric cone; complementarity problem; inexact smoothing method; MERIT FUNCTIONS; NEWTON METHOD; CONVERGENCE; ALGORITHM; MATRIX; P-0; COERCIVENESS; LCP;
D O I
10.1080/10556788.2010.534164
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We present an inexact smoothing method for the monotone complementarity problem over symmetric cones (SCCP). Our algorithm needs only to solve one linear system of equation and perform one line search per iteration. Instead of solving the linear equation exactly, we only need an inexact solution with a certain degree of accuracy. It is shown that any accumulation point of generated sequence is a solution of SCCP. It is proved that the proposed algorithm is locally superlinearly/quadratically convergent under suitable conditions. The computational results show the feasibility and efficiency of our algorithm.
引用
收藏
页码:445 / 459
页数:15
相关论文
共 34 条
[11]   Non-interior continuation method for solving the monotone semidefinite complementarity problem [J].
Huang, ZH ;
Han, JY .
APPLIED MATHEMATICS AND OPTIMIZATION, 2003, 47 (03) :195-211
[12]   The non-interior continuation methods for solving the P0 function nonlinear complementarity problem [J].
Huang, ZH ;
Han, J ;
Xu, DC ;
Zhang, LP .
SCIENCE IN CHINA SERIES A-MATHEMATICS, 2001, 44 (09) :1107-1114
[13]   Smoothing algorithms for complementarity problems over symmetric cones [J].
Huang, Zheng-Hai ;
Ni, Tie .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2010, 45 (03) :557-579
[14]   A REGULARIZED SMOOTHING NEWTON METHOD FOR SYMMETRIC CONE COMPLEMENTARITY PROBLEMS [J].
Kong, Lingchen ;
Sun, Jie ;
Xiu, Naihua .
SIAM JOURNAL ON OPTIMIZATION, 2008, 19 (03) :1028-1047
[15]   Globally convergent Jacobian smoothing inexact Newton methods for NCP [J].
Krejic, Natasa ;
Rapajic, Sanja .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2008, 41 (02) :243-261
[16]   COERCIVENESS OF SOME MERIT FUNCTIONS OVER SYMMETRIC CONES [J].
Liu, Xiao-Hong ;
Wu, Wei .
JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2009, 5 (03) :603-613
[17]   Some properties of a class of merit functions for symmetric cone complementarity problems [J].
Liu, Yong-Jin ;
Zhang, Li-Wei ;
Wang, Yin-He .
ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH, 2006, 23 (04) :473-495
[18]   REGULARIZATION METHODS FOR SEMIDEFINITE PROGRAMMING [J].
Malick, Jerome ;
Povh, Janez ;
Rendl, Franz ;
Wiegele, Angelika .
SIAM JOURNAL ON OPTIMIZATION, 2009, 20 (01) :336-356
[19]   SEMI-SMOOTH AND SEMI-CONVEX FUNCTIONS IN CONSTRAINED OPTIMIZATION [J].
MIFFLIN, R .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1977, 15 (06) :959-972
[20]   Growth Behavior of Two Classes of Merit Functions for Symmetric Cone Complementarity Problems [J].
Pan, S. H. ;
Chen, J. -S. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2009, 141 (01) :167-191