Assessment of hydrogels for bioprinting of endothelial cells

被引:60
作者
Benning, Leo [1 ]
Gutzweiler, Ludwig [2 ]
Troendle, Kevin [2 ]
Riba, Julian [2 ]
Zengerle, Roland [2 ,3 ,4 ]
Koltay, Peter [2 ]
Zimmermann, Stefan [2 ]
Stark, G. Bjoern [1 ]
Finkenzeller, Guenter [1 ]
机构
[1] Univ Freiburg, Dept Plast & Hand Surg, Med Ctr, Fac Med, Freiburg, Germany
[2] Univ Freiburg, Dept Microsyst Engn, Lab MEMS Applicat, IMTEK, Georges Koehler Allee 103, D-79110 Freiburg, Germany
[3] Hahn Schickard, Georges Koehler Allee 103, D-79110 Freiburg, Germany
[4] Univ Freiburg, FIT Freiburg Ctr Interact Mat & Bioinspired Techn, Georges Koehler Allee 105, D-79110 Freiburg, Germany
关键词
3D bioprinting; hydrogel; endothelial cell; vascularization; tissue engineering; SPHEROIDAL COCULTURE MODEL; HUMAN VASCULATURE; GROWTH-FACTOR; ANGIOGENESIS; MODULATION; MATRIGEL;
D O I
10.1002/jbm.a.36291
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In tissue engineering applications, vascularization can be accomplished by coimplantation of tissue forming cells and endothelial cells (ECs), whereby the latter are able to form functional blood vessels. The use of three-dimensional (3D) bioprinting technologies has the potential to improve the classical tissue engineering approach because these will allow the generation of scaffolds with high spatial control of endothelial cell allocation. This study focuses on a side by side comparison of popular commercially available bioprinting hydrogels (Matrigel, fibrin, collagen, gelatin, agarose, Pluronic F-127, alginate, and alginate/gelatin) in the context of their physicochemical parameters, their swelling/degradation characteristics, their biological effects on vasculogenesis-related EC parameters and their printability. The aim of this study was to identify the most suitable hydrogel or hydrogel combination for inkjet printing of ECs to build prevascularized tissue constructs. Most tested hydrogels displayed physicochemical characteristics suitable for inkjet printing. However, Pluronic F-127 and the alginate/gelatin blend were rapidly degraded when incubated in cell culture medium. Agarose, Pluronic F-127, alginate and alginate/gelatin hydrogels turned out to be unsuitable for bioprinting of ECs because of their non-adherent properties and/or their incapability to support EC proliferation. Gelatin was able to support EC proliferation and viability but was unable to support endothelial cell sprouting. Our experiments revealed fibrin and collagen to be most suitable for bioprinting of ECs, because these hydrogels showed acceptable swelling/degradation characteristics, supported vasculogenesis-related EC parameters and showed good printability. Moreover, ECs in constructs of preformed spheroids survived the printing process and formed capillary-like cords. (c) 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 935-947, 2018.
引用
收藏
页码:935 / 947
页数:13
相关论文
共 36 条
[1]  
Alajati A, 2008, NAT METHODS, V5, P439, DOI [10.1038/nmeth.1198, 10.1038/NMETH.1198]
[2]   Constitutive expression of phVEGF165 after intramuscular gene transfer promotes collateral vessel development in patients with critical limb ischemia [J].
Baumgartner, I ;
Pieczek, A ;
Manor, O ;
Blair, R ;
Kearney, M ;
Walsh, K ;
Isner, JM .
CIRCULATION, 1998, 97 (12) :1114-1123
[3]   Matrigel: From discovery and ECM mimicry to assays and models for cancer research [J].
Benton, Gabriel ;
Arnaoutova, Irina ;
George, Jay ;
Kleinman, Hynda K. ;
Koblinski, Jennifer .
ADVANCED DRUG DELIVERY REVIEWS, 2014, 79-80 :3-18
[4]   Injectable in situ crosslinkable RGD-modified alginate matrix for endothelial cells delivery [J].
Bidarra, Silvia J. ;
Barrias, Cristina C. ;
Fonseca, Keila B. ;
Barbosa, Mario A. ;
Soares, Raquel A. ;
Granja, Pedro L. .
BIOMATERIALS, 2011, 32 (31) :7897-7904
[5]   Cell and organ printing 2: Fusion of cell aggregates in three-dimensional gels [J].
Boland, T ;
Mironov, V ;
Gutowska, A ;
Roth, EA ;
Markwald, RR .
ANATOMICAL RECORD PART A-DISCOVERIES IN MOLECULAR CELLULAR AND EVOLUTIONARY BIOLOGY, 2003, 272A (02) :497-502
[6]   Inkjet printing for materials and devices [J].
Calvert, P .
CHEMISTRY OF MATERIALS, 2001, 13 (10) :3299-3305
[7]   Three-dimensional printing of stem cell-laden hydrogels submerged in a hydrophobic high-density fluid [J].
Campos, Daniela F. Duarte ;
Blaeser, Andreas ;
Weber, Michael ;
Jaekel, Joerg ;
Neuss, Sabine ;
Jahnen-Dechent, Wilhelm ;
Fischer, Horst .
BIOFABRICATION, 2013, 5 (01)
[8]   Human microvasculature fabrication using thermal inkjet printing technology [J].
Cui, Xiaofeng ;
Boland, Thomas .
BIOMATERIALS, 2009, 30 (31) :6221-6227
[9]   Modulation of 3D Fibrin Matrix Stiffness by Intrinsic Fibrinogen-Thrombin Compositions and by Extrinsic Cellular Activity [J].
Duong, Haison ;
Wu, Benjamin ;
Tawil, Bill .
TISSUE ENGINEERING PART A, 2009, 15 (07) :1865-1876
[10]   Induction, differentiation, and remodeling of blood vessels after transplantation of Bcl-2-transduced endothelial cells [J].
Enis, DR ;
Shepherd, BR ;
Wang, YN ;
Qasim, A ;
Shanahan, CM ;
Weissberg, PL ;
Kashgarian, M ;
Pober, JS ;
Schechner, JS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (02) :425-430