Compact helical antenna for smart implant applications

被引:66
作者
Karnaushenko, Dmitriy D. [1 ]
Karnaushenko, Daniil [1 ]
Makarov, Denys [1 ]
Schmidt, Oliver G. [1 ,2 ]
机构
[1] IFW Dresden, Inst Solid State & Mat Res Dresden, Inst Integrat Nanosci, D-01069 Dresden, Germany
[2] Tech Univ Chemnitz, Mat Syst Nanoelect, Chemnitz, Germany
基金
欧洲研究理事会;
关键词
NANOMEMBRANES; FABRICATION; NANOTUBES; POLYMER; TUBES;
D O I
10.1038/am.2015.53
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Smart implants are envisioned to revolutionize personal health care by assessing physiological processes, for example, upon wound healing, and communicating these data to a patient or medical doctor. The compactness of the implants is crucial to minimize discomfort during and after implantation. The key challenge in realizing small-sized smart implants is high-volume cost- and time-efficient fabrication of a compact but efficient antenna, which is impedance matched to 50 Omega, as imposed by the requirements of modern electronics. Here, we propose a novel route to realize arrays of 5.5-mm-long normal mode helical antennas operating in the industry-scientific-medical radio bands at 5.8 and 2.4 GHz, relying on a self-assembly process that enables large-scale high-yield fabrication of devices. We demonstrate the transmission and receiving signals between helical antennas and the communication between an antenna and a smartphone. Furthermore, we successfully access the response of an antenna embedded in a tooth, mimicking a dental implant. With a diameter of similar to 0.2 mm, these antennas are readily implantable using standard medical syringes, highlighting their suitability for in-body implant applications.
引用
收藏
页码:e188 / e188
页数:10
相关论文
共 49 条
[1]   Conformal Printing of Electrically Small Antennas on Three-Dimensional Surfaces [J].
Adams, Jacob J. ;
Duoss, Eric B. ;
Malkowski, Thomas F. ;
Motala, Michael J. ;
Ahn, Bok Yeop ;
Nuzzo, Ralph G. ;
Bernhard, Jennifer T. ;
Lewis, Jennifer A. .
ADVANCED MATERIALS, 2011, 23 (11) :1335-1340
[2]  
Anacleto P., 2012, ANT PROP C LAPC 2012, P1
[3]  
Balanis CA, 2011, MODERN ANTENNA HDB
[4]  
Bansal R, 2004, HDB ENG ELECTROMAGNE, V259
[5]   Photolithographically patterned smart hydrogel based bilayer actuators [J].
Bassik, Noy ;
Abebe, Beza T. ;
Laflin, Kate E. ;
Gracias, David H. .
POLYMER, 2010, 51 (26) :6093-6098
[6]   Implantable Devices: Issues and Challenges [J].
Bazaka, Kateryna ;
Jacob, Mohan V. .
ELECTRONICS, 2013, 2 (01) :1-34
[7]   Fabrication and characterization of three-dimensional InGaAs/GaAs nanosprings [J].
Bell, DJ ;
Dong, LX ;
Nelson, BJ ;
Golling, M ;
Zhang, L ;
Grützmacher, D .
NANO LETTERS, 2006, 6 (04) :725-729
[8]   Vertically aligned rolled-up SiO2 optical microcavities in add-drop configuration [J].
Boettner, Stefan ;
Li, Shilong ;
Jorgensen, Matthew R. ;
Schmidt, Oliver G. .
APPLIED PHYSICS LETTERS, 2013, 102 (25)
[9]   An implantable wireless neural interface for recording cortical circuit dynamics in moving primates [J].
Borton, David A. ;
Yin, Ming ;
Aceros, Juan ;
Nurmikko, Arto .
JOURNAL OF NEURAL ENGINEERING, 2013, 10 (02)
[10]   Self-Assembled Ultra-Compact Energy Storage Elements Based on Hybrid Nanomembranes [J].
Bufon, Carlos Cesar Bof ;
Gonzalez, Jose David Cojal ;
Thurmer, Dominic J. ;
Grimm, Daniel ;
Bauer, Martin ;
Schmidt, Oliver G. .
NANO LETTERS, 2010, 10 (07) :2506-2510