Global disturbance attenuation for MIMO nonlinear systems with controlled output containing input

被引:0
作者
Liu, XP [1 ]
Zhou, KM [1 ]
Gu, GX [1 ]
机构
[1] Northeastern Univ, Dept Automat Control, Shenyang 110006, Peoples R China
来源
PROCEEDINGS OF THE 37TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4 | 1998年
关键词
nonlinear systems; global stabilization; disturbance attenuation; L-2; gain; Lyapunov functions;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper studies the problem of global disturbance attenuation with stability for a class of multi-input multi-output nonlinear systems with penalty on input signal. The system under consideration is assumed to be in a special form which is much more general than the lower triangular form. A recursive algorithm composed of backstepping and augmentation is applied to show that the global disturbance attenuation with stability can be achieved via a static state feedback.
引用
收藏
页码:4081 / 4086
页数:6
相关论文
共 8 条
[1]  
[Anonymous], 2013, Nonlinear control systems
[2]   A note on almost disturbance decoupling for nonlinear minimum phase systems [J].
Isidori, A .
SYSTEMS & CONTROL LETTERS, 1996, 27 (03) :191-194
[3]  
Isidori A, 1997, IEEE DECIS CONTR P, P2831, DOI 10.1109/CDC.1997.657842
[4]  
Liu XP, 1998, P AMER CONTR CONF, P766, DOI 10.1109/ACC.1998.703511
[5]  
LIU XP, 1998, P 1998 IEEE CDC
[6]   NONLINEAR H-INFINITY ALMOST DISTURBANCE DECOUPLING [J].
MARINO, R ;
RESPONDEK, W ;
VANDERSCHAFT, AJ ;
TOMEI, P .
SYSTEMS & CONTROL LETTERS, 1994, 23 (03) :159-168
[7]  
Schwartz B, 1996, IEEE DECIS CONTR P, P1041, DOI 10.1109/CDC.1996.574632
[8]  
vander Schaft A. J., 1996, L2 GAIN PASSIVITY TE