Analytical modeling for heat transfer in sheared flows of nanofluids

被引:7
作者
Ferrari, Claudio [1 ]
Kaoui, Badr [2 ]
L'vov, Victor S. [3 ]
Procaccia, Itamar [3 ]
Rudenko, Oleksii [2 ,4 ]
Boonkkamp, J. H. M. ten Thije [4 ]
Toschi, Federico [2 ,4 ,5 ]
机构
[1] ISIS R&D Srl, I-00146 Rome, Italy
[2] Eindhoven Univ Technol, Dept Appl Phys, NL-5600 MB Eindhoven, Netherlands
[3] Weizmann Inst Sci, Dept Chem Phys, IL-76100 Rehovot, Israel
[4] Eindhoven Univ Technol, Dept Math & Comp Sci, NL-5600 MB Eindhoven, Netherlands
[5] CNR IAC, I-00185 Rome, Italy
来源
PHYSICAL REVIEW E | 2012年 / 86卷 / 01期
关键词
EFFECTIVE CONDUCTIVITY; THERMAL-CONDUCTIVITY; SUSPENSION; PARTICLES; MOTION;
D O I
10.1103/PhysRevE.86.016302
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We developed a model for the enhancement of the heat flux by spherical and elongated nanoparticles in sheared laminar flows of nanofluids. Besides the heat flux carried by the nanoparticles, the model accounts for the contribution of their rotation to the heat flux inside and outside the particles. The rotation of the nanoparticles has a twofold effect: it induces a fluid advection around the particle and it strongly influences the statistical distribution of particle orientations. These dynamical effects, which were not included in existing thermal models, are responsible for changing the thermal properties of flowing fluids as compared to quiescent fluids. The proposed model is strongly supported by extensive numerical simulations, demonstrating a potential increase of the heat flux far beyond the Maxwell-Garnett limit for the spherical nanoparticles. The road ahead, which should lead toward robust predictive models of heat flux enhancement, is discussed.
引用
收藏
页数:13
相关论文
共 27 条
[1]  
Allen M. P., 1987, COMPUTER SIMULATION
[2]  
[Anonymous], 1987, COURSE THEORETICAL P, DOI DOI 10.1016/C2013-0-03799-1
[3]   THE EFFECTIVE CONDUCTIVITY OF RANDOM SUSPENSIONS OF SPHERICAL-PARTICLES [J].
BONNECAZE, RT ;
BRADY, JF .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1991, 432 (1886) :445-465
[4]   A benchmark study on the thermal conductivity of nanofluids [J].
Buongiorno, Jacopo ;
Venerus, David C. ;
Prabhat, Naveen ;
McKrell, Thomas ;
Townsend, Jessica ;
Christianson, Rebecca ;
Tolmachev, Yuriy V. ;
Keblinski, Pawel ;
Hu, Lin-wen ;
Alvarado, Jorge L. ;
Bang, In Cheol ;
Bishnoi, Sandra W. ;
Bonetti, Marco ;
Botz, Frank ;
Cecere, Anselmo ;
Chang, Yun ;
Chen, Gany ;
Chen, Haisheng ;
Chung, Sung Jae ;
Chyu, Minking K. ;
Das, Sarit K. ;
Di Paola, Roberto ;
Ding, Yulong ;
Dubois, Frank ;
Dzido, Grzegorz ;
Eapen, Jacob ;
Escher, Werner ;
Funfschilling, Denis ;
Galand, Quentin ;
Gao, Jinwei ;
Gharagozloo, Patricia E. ;
Goodson, Kenneth E. ;
Gutierrez, Jorge Gustavo ;
Hong, Haiping ;
Horton, Mark ;
Hwang, Kyo Sik ;
Iorio, Carlo S. ;
Jang, Seok Pil ;
Jarzebski, Andrzej B. ;
Jiang, Yiran ;
Jin, Liwen ;
Kabelac, Stephan ;
Kamath, Aravind ;
Kedzierski, Mark A. ;
Kieng, Lim Geok ;
Kim, Chongyoup ;
Kim, Ji-Hyun ;
Kim, Seokwon ;
Lee, Seung Hyun ;
Leong, Kai Choong .
JOURNAL OF APPLIED PHYSICS, 2009, 106 (09)
[5]  
BURGERS JM, 1938, KON NED AKAD WET, V16, P113
[6]   EFFECTIVE CONDUCTIVITY OF DISPERSIONS - THE EFFECT OF RESISTANCE AT THE PARTICLE SURFACES [J].
CHIEW, YC ;
GLANDT, ED .
CHEMICAL ENGINEERING SCIENCE, 1987, 42 (11) :2677-2685
[7]  
Eastman J. A., 1996, FALL M MAT RES SOC B, P1
[8]   Thermal transport in nanofluids [J].
Eastman, JA ;
Phillpot, SR ;
Choi, SUS ;
Keblinski, P .
ANNUAL REVIEW OF MATERIALS RESEARCH, 2004, 34 :219-246
[9]   Review of Heat Conduction in Nanofluids [J].
Fan, Jing ;
Wang, Liqiu .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2011, 133 (04)
[10]   Discrete effects on boundary conditions for the lattice Boltzmann equation in simulating microscale gas flows [J].
Guo, Zhaoli ;
Shi, Baochang ;
Zhao, T. S. ;
Zheng, Chuguang .
PHYSICAL REVIEW E, 2007, 76 (05)