The reaction field of a water molecule in liquid water:: Comparison of different quantum/classical models

被引:38
作者
Chalmet, S [1 ]
Ruiz-López, MF [1 ]
机构
[1] Univ Nancy 1, Chim Theor Lab, Inst Nanceien Chim Mol, CNRS,Unite Mixte Rech 7565, F-54506 Vandoeuvre Les Nancy, France
关键词
D O I
10.1063/1.1389094
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The reaction field of a water molecule in liquid water has been computed with the help of continuum, discrete-continuum, and discrete models, using density functional theory calculations. In the continuum model, the liquid is simply described by a polarizable dielectric medium. The solute is placed in a cavity defined by a scaled van der Waals surface. Two different sets of van der Waals radii have been used for the atomic spheres. The discrete-continuum model consists of a quantum molecule surrounded by four classical molecules, the resulting aggregate being embedded in a dielectric continuum. Finally, in the discrete model, a molecular dynamics simulation is carried out for a quantum molecule in a box containing 215 classical molecules with periodic boundary conditions. The reaction field and the induced dipole moment in the standard continuum model are substantially underestimated. However, the use of optimized van der Waals radii for the atomic spheres produces a notable improvement. The discrete-continuum and discrete models lead to close results that are in good agreement with experimental data and previous theoretical estimations. For instance, the induced dipole moment (0.80 and 0.82 D for discrete-continuum and discrete models, respectively) compares well with the experimental estimate (0.75 D) and with Car-Parrinello simulations (1.08 D). The reaction field potential is analyzed in terms of multipole moment contributions. The role of the first shell and bulk solvent are also examined. (C) 2001 American Institute of Physics.
引用
收藏
页码:5220 / 5227
页数:8
相关论文
共 83 条
[1]   THEORY OF THE DIELECTRIC-CONSTANT OF ICE [J].
ADAMS, DJ .
NATURE, 1981, 293 (5832) :447-449
[2]   SOLUTE-SOLVENT INTERACTIONS - A SIMPLE PROCEDURE FOR CONSTRUCTING THE SOLVENT CAVITY FOR RETAINING A MOLECULAR SOLUTE [J].
AGUILAR, MA ;
DELVALLE, FJO .
CHEMICAL PHYSICS, 1989, 129 (03) :439-450
[3]  
AMARA P, 1998, COMBINED QUANTUM MEC
[4]  
Amara P., 1998, ENCY COMPUTATIONAL C, V1, P431
[5]  
[Anonymous], ENCY COMPUTATIONAL C
[6]   OPTIMIZATION OF SOLUTE CAVITIES AND VAN-DER-WAALS PARAMETERS IN AB-INITIO MST-SCRF CALCULATIONS OF NEUTRAL MOLECULES [J].
BACHS, M ;
LUQUE, FJ ;
OROZCO, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1994, 15 (04) :446-454
[7]   A combined discrete/continuum solvation model: Application to glycine [J].
Bandyopadhyay, P ;
Gordon, MS .
JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (03) :1104-1109
[8]   A new definition of cavities for the computation of solvation free energies by the polarizable continuum model [J].
Barone, V ;
Cossi, M ;
Tomasi, J .
JOURNAL OF CHEMICAL PHYSICS, 1997, 107 (08) :3210-3221
[9]   FREE-ENERGY PERTURBATION METHOD FOR CHEMICAL-REACTIONS IN THE CONDENSED PHASE - A DYNAMICAL-APPROACH BASED ON A COMBINED QUANTUM AND MOLECULAR MECHANICS POTENTIAL [J].
BASH, PA ;
FIELD, MJ ;
KARPLUS, M .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1987, 109 (26) :8092-8094
[10]   Molecular multipole moments of water molecules in ice Ih [J].
Batista, ER ;
Xantheas, SS ;
Jónsson, H .
JOURNAL OF CHEMICAL PHYSICS, 1998, 109 (11) :4546-4551