Application of Gegenbauer polynomials for biunivalent functions defined by subordination

被引:3
作者
Sakar, Fethiye Muge [1 ]
Hussain, Saqib [2 ]
Ahmad, Ibrar [2 ]
机构
[1] Dicle Univ, Dept Management, Diyarbakir, Turkey
[2] COMSATS Univ Islamabad, Dept Math, Abbottabad Campus, Islamabad, Pakistan
关键词
Gegenbauer polynomials; coefficient estimates; biunivalent functions and subordination; COEFFICIENT PROBLEM; SUBCLASSES; BOUNDS;
D O I
10.55730/1300-0098.3144
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present and investigate a new subclass of biunivalent functions by applying Gegenbouer polynomials in this paper. Also, we find nonsharp estimates on the first two coefficients vertical bar b(0)vertical bar and vertical bar b(1)vertical bar for functions belonging to this subclass. Furthermore, the Fekete-Szego inequality vertical bar b(1) - eta b(0)(2)vertical bar for this subclass is obtained. We also point out some consequences of results.
引用
收藏
页码:1089 / 1098
页数:10
相关论文
共 37 条
[31]   Based on a family of bi-univalent functions introduced through the Faber polynomial expansions and Noor integral operator [J].
Sakar, F. Muge ;
Akgul, Arzu .
AIMS MATHEMATICS, 2022, 7 (04) :5146-5155
[32]   On Initial Chebyshev Polynomial Coefficient Problem for Certain Subclass of Bi-Univalent Functions [J].
Sakar, F. Muge ;
Dogan, Ertugrul .
COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2020, 11 (01) :57-64
[33]  
Shah SGA, MATH PROBL ENG, V2021, P2021
[34]   ON MEROMORPHIC FUNCTIONS DEFINED BY A NEW CLASS OF LIU-SRIVASTAVA INTEGRAL OPERATOR [J].
Shah, Syed Ghoos Ali ;
Noor, Saima ;
Darus, Maslina ;
Ul Haq, Wasim ;
Hussain, Saqib .
INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2020, 18 (06) :1056-1065
[35]   Application of Quasisubordination to Certain Classes of Meromorphic Functions [J].
Shah, Syed Ghoos Ali ;
Hussain, Saqib ;
Rasheed, Akhter ;
Shareef, Zahid ;
Darus, Maslina .
JOURNAL OF FUNCTION SPACES, 2020, 2020
[36]   Certain subclasses of analytic and bi-univalent functions [J].
Srivastava, H. M. ;
Mishra, A. K. ;
Gochhayat, P. .
APPLIED MATHEMATICS LETTERS, 2010, 23 (10) :1188-1192
[37]  
Szego G., 1933, J LOND MATH SOC, V1, P85, DOI DOI 10.1112/JLMS/S1-8.2.85