Application of Gegenbauer polynomials for biunivalent functions defined by subordination

被引:3
作者
Sakar, Fethiye Muge [1 ]
Hussain, Saqib [2 ]
Ahmad, Ibrar [2 ]
机构
[1] Dicle Univ, Dept Management, Diyarbakir, Turkey
[2] COMSATS Univ Islamabad, Dept Math, Abbottabad Campus, Islamabad, Pakistan
关键词
Gegenbauer polynomials; coefficient estimates; biunivalent functions and subordination; COEFFICIENT PROBLEM; SUBCLASSES; BOUNDS;
D O I
10.55730/1300-0098.3144
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present and investigate a new subclass of biunivalent functions by applying Gegenbouer polynomials in this paper. Also, we find nonsharp estimates on the first two coefficients vertical bar b(0)vertical bar and vertical bar b(1)vertical bar for functions belonging to this subclass. Furthermore, the Fekete-Szego inequality vertical bar b(1) - eta b(0)(2)vertical bar for this subclass is obtained. We also point out some consequences of results.
引用
收藏
页码:1089 / 1098
页数:10
相关论文
共 37 条
[1]   A certain subclass of bi-univalent analytic functions introduced by means of the q-analogue of Noor integral operator and Horadam polynomials [J].
Akgul, Arzu ;
Sakar, F. Muge .
TURKISH JOURNAL OF MATHEMATICS, 2019, 43 (05) :2275-2286
[2]   Subclasses of Bi-Univalent Functions Defined by Frasin Differential Operator [J].
Aldawish, Ibtisam ;
Al-Hawary, Tariq ;
Frasin, B. A. .
MATHEMATICS, 2020, 8 (05)
[3]  
Amourah A., 2020, Palest. J. Math., V9, P187
[4]  
Amourah A., 2019, General Letters in Mathematics, V7, P45
[5]   Fekete-Szego Inequality for Analytic and Biunivalent Functions Subordinate to Gegenbauer Polynomials [J].
Amourah, Ala ;
Frasin, Basem Aref ;
Abdeljawad, Thabet .
JOURNAL OF FUNCTION SPACES, 2021, 2021
[6]  
Aral A., 2013, Applications of q-Calculus in Operator Theory
[7]  
Brannan D.A., 1980, ASPECTS CONT COMPLEX
[8]  
Bulut S., 2017, J FRACT CALC APPL, V8, P32
[9]  
Bulut S., 2017, J CLASS ANAL, V11, P83, DOI [10.7153/jca-11-06, DOI 10.7153/JCA-11-06]
[10]  
Bulut S., 2013, NOVI SAD J MATH, V43, P59