Blow-up behavior of prescribed mass minimizers for nonlinear Choquard equations with singular potentials

被引:2
作者
Dinh, Van Duong [1 ,2 ]
机构
[1] Univ Lille, CNRS, Lab Paul Painleve, UMR 8524, F-59655 Villeneuve Dascq, France
[2] HCMC Univ Pedag, Dept Math, 280 An Duong Vuong, Ho Chi Minh, Vietnam
来源
MONATSHEFTE FUR MATHEMATIK | 2020年 / 192卷 / 03期
关键词
Nonlinear Choquard equations; Minimizing problem; Concentration-compactness principle; Blow-up behavior; CONCENTRATION-COMPACTNESS PRINCIPLE; EXISTENCE; CALCULUS;
D O I
10.1007/s00605-020-01387-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the constrained minimizing problem for the energy functional related to the nonlinear Choquard equation I(a) = inf {E(phi) : phi is an element of H-1(R-N), parallel to phi parallel to(2)(L2) = a}, where N >= 1, a > 0, E(phi):= 1/2 integral(RN) vertical bar del phi(x)vertical bar(2)dx+1/2 integral V-RN(x)vertical bar del phi(x)vertical bar(2)dx - 1/2p integral(RN) (Ia *vertical bar phi|(p))(x)vertical bar phi(x)vertical bar(p)dx is the energy functional with 0 < a < N, N+ a/N < p < N+ a/N-2 if N = 3, N+ a/N < p < infinity if N = 1, 2 and I-alpha is the Riesz potential. The external potential V : R-N -> R is assumed to satisfy (A1) V is an element of L-q(R-N) + L-infinity(R-N) with q = 1 if N = 1, q > 1 if N = 2 and q = N/2 if N >= 3 and (A2) for any c > 0, |{x is an element of R-N : vertical bar V(x)vertical bar > c}| < infinity. We first give a complete classification of existence and non-existence of minimizers for the problem. In the mass-critical case p = N+a+2/N, under an appropriate assumption of the external potential, we give a detailed description of the blow-up behavior of minimizers as the mass tends to a critical value.
引用
收藏
页码:551 / 589
页数:39
相关论文
共 24 条
[1]  
[Anonymous], 1954, Untersuchung uiber die Elektronentheorie der Kristalle, DOI DOI 10.1515/9783112649305
[2]  
[Anonymous], 2001, Analysis
[3]  
Choquard P, 2008, DIFFER INTEGRAL EQU, V21, P665
[4]  
de Oliveira CR, 2009, PROG MATH PHYS, V54, P5
[5]  
Dinh V.D, EXISTENCE NON EXISTE
[6]   SOLITON AND BLOW-UP SOLUTIONS TO THE TIME-DEPENDENT SCHRODINGER-HARTREE EQUATION [J].
Genev, Hristo ;
Venkov, George .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2012, 5 (05) :903-923
[7]   Energy estimates and symmetry breaking in attractive Bose-Einstein condensates with ring-shaped potentials [J].
Guo, Yujin ;
Zeng, Xiaoyu ;
Zhou, Huan-Song .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2016, 33 (03) :809-828
[8]   On the Mass Concentration for Bose-Einstein Condensates with Attractive Interactions [J].
Guo, Yujin ;
Seiringer, Robert .
LETTERS IN MATHEMATICAL PHYSICS, 2014, 104 (02) :141-156
[9]  
Hardy G.H., 1930, J. London Math. Soc., V5, P34
[10]   Ground states of nonlinear Choquard equations with multi-well potentials [J].
Li, Shuai ;
Xiang, Jianlin ;
Zeng, Xiaoyu .
JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (08)