Finite-temperature hydrodynamics for one-dimensional Bose gases: Breathing-mode oscillations as a case study

被引:30
作者
Bouchoule, I. [1 ]
Szigeti, S. S. [2 ,3 ]
Davis, M. J. [2 ]
Kheruntsyan, K. V. [2 ]
机构
[1] Univ Paris Sud 11, CNRS, Lab Charles Fabry, Inst Opt, 2 Ave Augustin Fresnel, F-91127 Palaiseau, France
[2] Univ Queensland, Sch Math & Phys, Brisbane, Qld 4072, Australia
[3] Univ Queensland, ARC Ctr Excellence Engineered Quantum Syst, Brisbane, Qld 4072, Australia
基金
澳大利亚研究理事会;
关键词
EXCITATIONS; DYNAMICS;
D O I
10.1103/PhysRevA.94.051602
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We develop a finite-temperature hydrodynamic approach for a harmonically trapped one-dimensional quasicondensate and apply it to describe the phenomenon of frequency doubling in the breathing-mode oscillations of the quasicondensate momentum distribution. The doubling here refers to the oscillation frequency relative to the oscillations of the real-space density distribution, invoked by a sudden confinement quench. By constructing a nonequilibrium phase diagram that characterizes the regime of frequency doubling and its gradual disappearance, we find that this crossover is governed by the quench strength and the initial temperature rather than by the equilibrium-state crossover from the quasicondensate to the ideal Bose gas regime. The hydrodynamic predictions are supported by the results of numerical simulations based on a finite-temperature c-field approach and extend the utility of the hydrodynamic theory for low-dimensional quantum gases to the description of finite-temperature systems and their dynamics in momentum space.
引用
收藏
页数:5
相关论文
共 34 条
[1]  
[Anonymous], 1987, FLUID MECH-SOV RES
[2]   Mapping out the quasicondensate transition through the dimensional crossover from one to three dimensions [J].
Armijo, J. ;
Jacqmin, T. ;
Kheruntsyan, K. ;
Bouchoule, I. .
PHYSICAL REVIEW A, 2011, 83 (02)
[3]  
Atas Y., ARXIV160808720
[4]   Dynamics and statistical mechanics of ultra-cold Bose gases using c-field techniques [J].
Blakie, P. B. ;
Bradley, A. S. ;
Davis, M. J. ;
Ballagh, R. J. ;
Gardiner, C. W. .
ADVANCES IN PHYSICS, 2008, 57 (05) :363-455
[5]   Interaction-induced crossover versus finite-size condensation in a weakly interacting trapped one-dimensional Bose gas [J].
Bouchoule, I. ;
Kheruntsyan, K. V. ;
Shlyapnikov, G. V. .
PHYSICAL REVIEW A, 2007, 75 (03)
[6]   Sudden Expansion of a One-Dimensional Bose Gas from Power-Law Traps [J].
Campbell, A. S. ;
Gangardt, D. M. ;
Kheruntsyan, K. V. .
PHYSICAL REVIEW LETTERS, 2015, 114 (12)
[7]   Coherence properties of a continuous atom laser [J].
Castin, Y ;
Dum, R ;
Mandonnet, E ;
Minguzzi, A ;
Carusotto, I .
JOURNAL OF MODERN OPTICS, 2000, 47 (14-15) :2671-2695
[8]   Monopole Excitations of a Harmonically Trapped One-Dimensional Bose Gas from the Ideal Gas to the Tonks-Girardeau Regime [J].
Choi, S. ;
Dunjko, V. ;
Zhang, Z. D. ;
Olshanii, M. .
PHYSICAL REVIEW LETTERS, 2015, 115 (11)
[9]   Yang-Yang thermometry and momentum distribution of a trapped one-dimensional Bose gas [J].
Davis, M. J. ;
Blakie, P. B. ;
van Amerongen, A. H. ;
van Druten, N. J. ;
Kheruntsyan, K. V. .
PHYSICAL REVIEW A, 2012, 85 (03)
[10]   Simulations of bose fields at finite temperature [J].
Davis, MJ ;
Morgan, SA ;
Burnett, K .
PHYSICAL REVIEW LETTERS, 2001, 87 (16) :1-160402