Compact composition operators on weighted Bergman spaces of the unit ball

被引:0
作者
Clahane, DD [1 ]
机构
[1] Univ Calif Irvine, Dept Math, Irvine, CA 92717 USA
关键词
composition operators; compact operators; Bergman spaces; Hardy spaces; several complex variables; Carleson measures; unit ball;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For p > 0 and alpha greater than or equal to 0, let A(alpha)(p)(B-n) be the weighted Bergman space of the unit ball B-n in C-n, and denote the Hardy space by H-p(B-n). Suppose that phi : B-n --> B-n is holomorphic. We show that if the composition operator C-phi defined by C-phi(f)= f circle phi is bounded on A(alpha)(p)(B-n) and satisfies lim(/z/-->1-)(1-/z/(2)/1-/phi (z)/(2))(alpha +2)//phi ' (z)//(2) = 0, then C-phi is compact on A(beta)(p)(B-n) for all beta greater than or equal to alpha. Along the way we prove some comparison results on boundedness and compactness of composition operators on H-p(B-n) and A(alpha)(p)(B-n), as well as a Carleson measure-type theorem involving these spaces and more general weighted holomorphic Sobolev spaces.
引用
收藏
页码:335 / 355
页数:21
相关论文
共 20 条
[1]  
[Anonymous], 1989, DISSERTATIONES MATH
[2]   ESTIMATES FOR DERIVATIVES OF HOLOMORPHIC-FUNCTIONS IN PSEUDOCONVEX DOMAINS [J].
BEATROUS, F .
MATHEMATISCHE ZEITSCHRIFT, 1986, 191 (01) :91-116
[3]   ON BOUNDEDNESS OF COMPOSITION OPERATORS ON H-2(B-2) [J].
CIMA, JA ;
STANTON, CS ;
WOGEN, WR .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 91 (02) :217-222
[4]  
CIMA JA, 1982, J OPERAT THEOR, V7, P157
[5]  
CLAHANE D, SPECTRA POWER COMPAC
[6]  
CLAHANE D, BOUNDED COMPOSITION
[7]  
COWEN C., 1995, Studies in Advanced Mathematics
[8]  
Cowen CC., 2000, ACTA SCI MATH SZEGED, V66, P351
[9]   REPRESENTATION AND DUALITY IN WEIGHTED SPACES OF ANALYTIC-FUNCTIONS [J].
LUECKING, DH .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1985, 34 (02) :319-336
[10]   ANGULAR DERIVATIVES AND COMPACT COMPOSITION OPERATORS ON THE HARDY AND BERGMAN SPACES [J].
MACCLUER, BD ;
SHAPIRO, JH .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1986, 38 (04) :878-906