Discrete Morse theory on digraphs

被引:0
|
作者
Lin, Yong [1 ,2 ]
Wang, Chong [3 ,4 ]
Yau, Shing-Tung [5 ]
机构
[1] Tsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Dept Math, Beijing 100084, Peoples R China
[3] Cangzhou Normal Univ, Dept Math & Stat, Cangzhou 061000, Hebei, Peoples R China
[4] Renmin Univ China, Sch Math, Beijing 100872, Peoples R China
[5] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
基金
中国国家自然科学基金;
关键词
Discrete Morse theory; quasi-isomorphism; path homology; COHOMOLOGY; HOMOLOGY;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we give a necessary and sufficient condition that discrete Morse functions on a digraph can be extended to be Morse functions on its transitive closure, from this we can extend the Morse theory to digraphs by using quasi-isomorphism between path complex and discrete Morse complex, we also prove a general sufficient condition for digraphs that the Morse functions satisfying this necessary and sufficient condition.
引用
收藏
页码:1711 / 1737
页数:27
相关论文
共 50 条
  • [1] Allowing cycles in discrete Morse theory
    Gonzalez-Lorenzo, Aldo
    Bac, Alexandra
    Mari, Jean-Luc
    Real, Pedro
    TOPOLOGY AND ITS APPLICATIONS, 2017, 228 : 1 - 35
  • [2] Multiparameter discrete Morse theory
    Brouillette G.
    Allili M.
    Kaczynski T.
    Journal of Applied and Computational Topology, 2024, 8 (7) : 2155 - 2196
  • [3] Denoising with discrete Morse theory
    Soham Mukherjee
    The Visual Computer, 2021, 37 : 2883 - 2894
  • [4] Equivariant discrete Morse theory
    Freij, Ragnar
    DISCRETE MATHEMATICS, 2009, 309 (12) : 3821 - 3829
  • [5] Denoising with discrete Morse theory
    Mukherjee, Soham
    VISUAL COMPUTER, 2021, 37 (9-11) : 2883 - 2894
  • [6] Morse Sequences: A Simple Approach to Discrete Morse Theory
    Bertrand, Gilles
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2025, 67 (02)
  • [7] Minimal Resolutions via Algebraic Discrete Morse Theory
    Joellenbeck, Michael
    Welker, Volkmar
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 197 (923) : 1 - +
  • [8] Discrete Morse theory and a reformulation of the K(π, 1)-conjecture
    Ozornova, Viktoriya
    COMMUNICATIONS IN ALGEBRA, 2017, 45 (04) : 1760 - 1784
  • [9] Merge trees in discrete Morse theory
    Johnson, Benjamin
    Scoville, Nicholas A.
    RESEARCH IN THE MATHEMATICAL SCIENCES, 2022, 9 (03)
  • [10] Parameterized Complexity of Discrete Morse Theory
    Burton, Benjamin A.
    Lewiner, Thomas
    Paixao, Joao
    Spreer, Jonathan
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2016, 42 (01):