Machine learning trained with quantitative susceptibility mapping to detect mild cognitive impairment in Parkinson's disease

被引:17
作者
Shibata, Haruto [1 ,2 ]
Uchida, Yuto [1 ,3 ]
Inui, Shohei [4 ]
Kan, Hirohito [5 ]
Sakurai, Keita [6 ]
Oishi, Naoya [7 ]
Ueki, Yoshino [8 ]
Oishi, Kenichi [9 ]
Matsukawa, Noriyuki [3 ]
机构
[1] Toyokawa City Hosp, Dept Neurol, Toyokawa, Aichi, Japan
[2] Nagoya City Univ, Dept Neurol, East Med Ctr, Nagoya, Aichi, Japan
[3] Nagoya City Univ, Dept Neurol, Grad Sch Med Sci, Nagoya, Aichi, Japan
[4] Univ Tokyo, Grad Sch Med, Dept Radiol, Tokyo, Japan
[5] Nagoya Univ, Dept Integrated Hlth Sci, Grad Sch Med, Nagoya, Aichi, Japan
[6] Natl Ctr Geriatr & Gerontol, Dept Radiol, Obu, Aichi, Japan
[7] Kyoto Univ, Med Innovat Ctr, Grad Sch Med, Kyoto, Japan
[8] Nagoya City Univ, Dept Rehabil Med, Grad Sch Med Sci, Nagoya, Aichi, Japan
[9] Johns Hopkins Univ, Sch Med, Dept Radiol, Baltimore, MD 21205 USA
基金
日本学术振兴会;
关键词
Machine learning; Mild cognitive impairment; MRI; Parkinson 's disease; Quantitative susceptibility mapping; DIAGNOSTIC-CRITERIA; BRAIN IRON; DEMENTIA; DECLINE; MULTICENTER; ATLAS;
D O I
10.1016/j.parkreldis.2021.12.004
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Background: Cognitive decline is commonly observed in Parkinson's disease (PD). Identifying PD with mild cognitive impairment (PD-MCI) is crucial for early initiation of therapeutic interventions and preventing cognitive decline. Objective: We aimed to develop a machine learning model trained with magnetic susceptibility values based on the multi-atlas label-fusion method to classify PD without dementia into PD-MCI and normal cognition (PD-CN). Methods: This multicenter observational cohort study retrospectively reviewed 61 PD-MCI and 59 PD-CN cases for the internal validation cohort and 22 PD-MCI and 21 PD-CN cases for the external validation cohort. The multi-atlas method parcellated the quantitative susceptibility mapping (QSM) images into 20 regions of interest and extracted QSM-based magnetic susceptibility values. Random forest, extreme gradient boosting, and light gradient boosting were selected as machine learning algorithms. Results: All classifiers demonstrated substantial performances in the classification task, particularly the random forest model. The accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve for this model were 79.1%, 77.3%, 81.0%, and 0.78, respectively. The QSM values in the caudate nucleus, which were important features, were inversely correlated with the Montreal Cognitive Assessment scores (right caudate nucleus: r = -0.573, 95% CI: -0.801 to -0.298, p = 0.003; left caudate nucleus: r = -0.659, 95% CI: -0.894 to -0.392, p < 0.001). Conclusions: Machine learning models trained with QSM values successfully classified PD without dementia into PD-MCI and PD-CN groups, suggesting the potential of QSM values as an auxiliary biomarker for early evaluation of cognitive decline in patients with PD.
引用
收藏
页码:104 / 110
页数:7
相关论文
共 27 条
  • [1] Prevalence and characteristics of dementia in Parkinson disease - An 8-year prospective study
    Aarsland, D
    Andersen, K
    Larsen, JP
    Lolk, A
    Kragh-Sorensen, P
    [J]. ARCHIVES OF NEUROLOGY, 2003, 60 (03) : 387 - 392
  • [2] Mild cognitive impairment in Parkinson disease A multicenter pooled analysis
    Aarsland, D.
    Bronnick, K.
    Williams-Gray, C.
    Weintraub, D.
    Marder, K.
    Kulisevsky, J.
    Burn, D.
    Barone, P.
    Pagonabarraga, J.
    Allcock, L.
    Santangelo, G.
    Foltynie, T.
    Janvin, C.
    Larsen, J. P.
    Barker, R. A.
    Emre, M.
    [J]. NEUROLOGY, 2010, 75 (12) : 1062 - 1069
  • [3] Cognitive decline in Parkinson disease
    Aarsland, Dag
    Creese, Byron
    Politis, Marios
    Chaudhuri, K. Ray
    Ffytche, Dominic H.
    Weintraub, Daniel
    Ballard, Clive
    [J]. NATURE REVIEWS NEUROLOGY, 2017, 13 (04) : 217 - 231
  • [4] A modified Fourier-based phase unwrapping algorithm with an application to MRI venography
    Bagher-Ebadian, Hassan
    Jiang, Quan
    Ewing, James R.
    [J]. JOURNAL OF MAGNETIC RESONANCE IMAGING, 2008, 27 (03) : 649 - 652
  • [5] Dementia and survival in Parkinson disease - A 12-year population study
    Buter, T. C.
    van den Hout, A.
    Matthews, F. E.
    Larsen, J. P.
    Brayne, C.
    Aarsland, D.
    [J]. NEUROLOGY, 2008, 70 (13) : 1017 - 1022
  • [6] The MoCA Well-suited screen for cognitive impairment in Parkinson disease
    Dalrymple-Alford, J. C.
    MacAskill, M. R.
    Nakas, C. T.
    Livingston, L.
    Graham, C.
    Crucian, G. P.
    Melzer, T. R.
    Kirwan, J.
    Keenan, R.
    Wells, S.
    Porter, R. J.
    Watts, R.
    Anderson, T. J.
    [J]. NEUROLOGY, 2010, 75 (19) : 1717 - 1725
  • [7] Machine learning in neuroimaging: Progress and challenges
    Davatzikos, Christos
    [J]. NEUROIMAGE, 2019, 197 : 652 - 656
  • [8] Functional connectivity and cognitive decline over 3 years in Parkinson disease
    Dubbelink, Kim T. E. Olde
    Schoonheim, Menno M.
    Deijen, Jan Berend
    Twisk, Jos W. R.
    Barkhof, Frederik
    Berendse, Henk W.
    [J]. NEUROLOGY, 2014, 83 (22) : 2046 - 2053
  • [9] Model-based and Model-free Machine Learning Techniques for Diagnostic Prediction and Classification of Clinical Outcomes in Parkinson's Disease
    Gao, Chao
    Sun, Hanbo
    Wang, Tuo
    Tang, Ming
    Bohnen, Nicolaas I.
    Muller, Martijn L. T. M.
    Herman, Talia
    Giladi, Nir
    Kalinin, Alexandr
    Spino, Cathie
    Dauer, William
    Hausdorff, Jeffrey M.
    Dinov, Ivo D.
    [J]. SCIENTIFIC REPORTS, 2018, 8
  • [10] Iron and dopamine: a toxic couple
    Hare, Dominic J.
    Double, Kay L.
    [J]. BRAIN, 2016, 139 : 1026 - 1035