Instabilities of optical solitons and Hamiltonian singular solutions in a medium of finite extension

被引:5
作者
Assemat, E. [1 ]
Picozzi, A. [1 ]
Jauslin, H. R. [1 ]
Sugny, D. [1 ]
机构
[1] Univ Bourgogne, CNRS, UMR 5209, Lab Interdisciplinaire Carnot Bourgogne ICB, F-21078 Dijon, France
来源
PHYSICAL REVIEW A | 2011年 / 84卷 / 01期
关键词
POLARIZATION ATTRACTION; COUNTERPROPAGATING WAVES; FIBER;
D O I
10.1103/PhysRevA.84.013809
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We analyze the role of soliton solutions and Hamiltonian singularities in the dynamics of counterpropagating waves in a medium of finite spatial extension. The soliton solution can become unstable due to the finite extension of the system. We show that the spatiotemporal dynamics then relaxes toward a Hamiltonian singular state of a nature different than that of the soliton state. This phenomenon can be explained through a geometrical analysis of the singularities of the stationary Hamiltonian system.
引用
收藏
页数:4
相关论文
共 30 条
[1]  
Ablowitz M., 1992, SOLITONS NONLINEAR E, Vsecond
[2]  
[Anonymous], 2015, Global aspects of classical integrable systems
[3]  
Arnold V. I., 1989, Mathematical Method of Classical Mechanics, V2
[4]   Manifestation of Hamiltonian Monodromy in Nonlinear Wave Systems [J].
Assemat, E. ;
Michel, C. ;
Picozzi, A. ;
Jauslin, H. R. ;
Sugny, D. .
PHYSICAL REVIEW LETTERS, 2011, 106 (01)
[5]   Complete nonlinear polarization control in an optical fiber system [J].
Assemat, E. ;
Lagrange, S. ;
Picozzi, A. ;
Jauslin, H. R. ;
Sugny, D. .
OPTICS LETTERS, 2010, 35 (12) :2025-2027
[6]  
CHEREDNIK IV, 1981, SOV J NUCL PHYS+, V33, P144
[7]   HAMILTONIAN CHAOS IN NONLINEAR OPTICAL POLARIZATION DYNAMICS [J].
DAVID, D ;
HOLM, DD ;
TRATNIK, MV .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 187 (06) :281-367
[8]   Integrable models in nonlinear optics and soliton solutions [J].
Degasperis, Antonio .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (43)
[9]   Normalization and global analysis of perturbations of the hydrogen atom [J].
Efstathiou, K. ;
Sadovskii, D. A. .
REVIEWS OF MODERN PHYSICS, 2010, 82 (03) :2099-2154
[10]   Integrable Hamiltonian systems with swallowtails [J].
Efstathiou, K. ;
Sugny, D. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (08)