Computational modeling and evolutionary implications of biochemical reactions in bacterial microcompartments

被引:4
|
作者
Huffine, Clair A. [1 ,2 ,3 ,4 ]
Wheeler, Lucas C. [5 ]
Wing, Boswell [6 ]
Cameron, Jeffrey C. [2 ,3 ,7 ]
机构
[1] Univ Colorado Boulder, BioFrontiers Inst, 3415 Colorado Ave, Boulder, CO 80309 USA
[2] Univ Colorado, Dept Biochem, Boulder, CO 80309 USA
[3] Univ Colorado, Renewable & Sustainable Energy Inst, Boulder, CO 80309 USA
[4] Univ Colorado, BioFrontiers Inst, Interdisciplinary Quantitat Biol Program IQ Biol, Boulder, CO 80309 USA
[5] Univ Colorado, Dept Ecol & Evolutionary Biol, Boulder, CO 80309 USA
[6] Dept Geol Sci, Boulder, CO 80309 USA
[7] Natl Renewable Energy Lab, Golden, CO 80401 USA
基金
美国国家科学基金会;
关键词
INORGANIC CARBON FLUXES; SYNECHOCOCCUS PCC7942; CARBOXYSOME SHELL; ANHYDRASE; PHOTOSYNTHESIS; CO2; DIOXIDE; RUBISCO; BICARBONATE; DIVERSITY;
D O I
10.1016/j.mib.2021.10.001
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Bacterial microcompartments (BMCs) are proteinencapsulated compartments found across at least 23 bacterial phyla. BMCs contain a variety of metabolic processes that share the commonality of toxic or volatile intermediates, oxygen-sensitive enzymes and cofactors, or increased substrate concentration for magnified reaction rates. These compartmentalized reactions have been computationally modeled to explore the encapsulated dynamics, ask evolutionary-based questions, and develop a more systematic understanding required for the engineering of novel BMCs. Many crucial aspects of these systems remain unknown or unmeasured, such as substrate permeabilities across the protein shell, feasibility of pH gradients, and transport rates of associated substrates into the cell. This review explores existing BMC models, dominated in the literature by cyanobacterial carboxysomes, and highlights potentially important areas for exploration.
引用
收藏
页码:15 / 23
页数:9
相关论文
共 50 条
  • [1] Quantifying photosynthetic metabolites permeability across bacterial microcompartments using computational microscopy
    Sarkar, Daipayan
    Sutter, Markus
    Kerfeld, Cheryl A.
    Vermaas, Josh V.
    BIOPHYSICAL JOURNAL, 2023, 122 (03) : 538A - 538A
  • [2] Computational nature of biochemical reactions
    Ehrenfeucht, A.
    Rozenberg, G.
    DEVELOPMENTS IN LANGUAGE THEORY, PROCEEDINGS, 2006, 4036 : 36 - 36
  • [3] Local intense cellular electric fields and their relevance in the computational modeling of biochemical reactions
    Matta, Cherif F.
    Huang, Lulu
    Massa, Lou
    FUTURE MEDICINAL CHEMISTRY, 2012, 4 (15) : 1873 - 1875
  • [4] Evolutionary implications of bacterial polyketide synthases
    Jenke-Kodama, H
    Sandmann, A
    Müller, R
    Dittmann, E
    MOLECULAR BIOLOGY AND EVOLUTION, 2005, 22 (10) : 2027 - 2039
  • [5] Modeling of Uncertainties in Biochemical Reactions
    Miskovic, Ljubisa
    Hatzimanikatis, Vassily
    BIOTECHNOLOGY AND BIOENGINEERING, 2011, 108 (02) : 413 - 423
  • [6] Isoprenoid biosynthesis in Archaea - Biochemical and evolutionary implications
    Matsumi, Rie
    Atomi, Haruyuki
    Driessen, Arnold J. M.
    van der Oost, John
    RESEARCH IN MICROBIOLOGY, 2011, 162 (01) : 39 - 52
  • [7] A structural and computational study of citrulline in biochemical reactions
    Caruso, Alessio
    Rossi, Miriam
    Gahn, Christopher
    Caruso, Francesco
    STRUCTURAL CHEMISTRY, 2017, 28 (05) : 1581 - 1589
  • [8] Computational Nature of Processes Induced by Biochemical Reactions
    Ehrenfeucht, Andrzej
    Rozenberg, Grzegorz
    MEMBRANE COMPUTING, 2010, 5957 : 16 - 17
  • [9] A structural and computational study of citrulline in biochemical reactions
    Alessio Caruso
    Miriam Rossi
    Christopher Gahn
    Francesco Caruso
    Structural Chemistry, 2017, 28 : 1581 - 1589
  • [10] Bacterial degradation of pyrene: Biochemical reactions and mechanisms
    Zada, Sahib
    Zhou, Haixin
    Xie, Jianmin
    Hu, Zhong
    Ali, Sardar
    Sajjad, Wasim
    Wang, Hui
    INTERNATIONAL BIODETERIORATION & BIODEGRADATION, 2021, 162