Modeling the Growth Kinetics of Anodic TiO2 Nanotubes

被引:27
|
作者
Apolinario, A. [1 ,2 ]
Quiterio, P. [1 ,2 ]
Sousa, C. T. [1 ,2 ]
Ventura, J. [1 ,2 ]
Sousa, J. B. [1 ,2 ]
Andrade, L. [3 ]
Mendes, A. M. [3 ]
Araujo, J. P. [1 ,2 ]
机构
[1] Univ Porto, Fac Ciencias, IFIMUP, P-4169007 Oporto, Portugal
[2] Univ Porto, Fac Ciencias, IN Inst Nanosci & Nanotechnol, Dep Fis & Astron, P-4169007 Oporto, Portugal
[3] Fac Engn, LEPABE Lab Proc Engn Environm Biotechnol & Energy, Dept Engn Quim, P-4200465 Oporto, Portugal
来源
关键词
POROUS ALUMINA; FABRICATION; ANODIZATION; ARRAYS; TITANIUM;
D O I
10.1021/jz502380b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The fundamental understanding of the barrier layer (delta(b)) growth in TiO2 nanotubes (NTs) is here established and compared with the classical metal oxidation theory from Mott and Cabrera. The role of delta(b) in the anodization of TiO2 NTs under different applied potentials and times was analyzed using scanning transmission electron microscopy (STEM). Contrary to the well-known case of anodic aluminum oxide, we found that delta(b) of TiO2 NTs progressively grows over time due to the nonsteady anodization regime. We then establish a relation between the phenomenological growth of the barrier layer with time and applied voltage, delta(b)(V,t) using the high-field Mott and Cabrera conduction theory. The developed model was found to be in excellent agreement with the experimental data from both STEM and anodization curves. On the basis of these results, the relationship between delta(b) and the anodization time and potential can now be quantitatively understood.
引用
收藏
页码:845 / 851
页数:7
相关论文
共 50 条
  • [31] Rapid anodic growth of TiO2 and WO3 nanotubes in fluoride free electrolytes
    Hahn, R.
    Macak, J. M.
    Schmuki, P.
    ELECTROCHEMISTRY COMMUNICATIONS, 2007, 9 (05) : 947 - 952
  • [32] The relationship between the growth rate of anodic TiO2 nanotubes, the fluoride concentration and the electronic current
    Peng, Kaiwen
    Liu, Lin
    Zhang, Jiazheng
    Ma, Juanjuan
    Liu, Yuhong
    ELECTROCHEMISTRY COMMUNICATIONS, 2023, 148
  • [33] Influence of Anodic and Thermal Barrier Layers on Physicochemical Behavior of Anodic TiO2 Nanotubes
    Miraghaei, S.
    Ashrafizadeh, F.
    Santamaria, M.
    Di Quarto, F.
    Shimizu, K.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (11) : K197 - K204
  • [34] Ab initio modeling of TiO2 nanotubes
    Szieberth, Denes
    Ferrari, Anna Maria
    Noel, Yves
    Ferrabone, Matteo
    NANOSCALE, 2010, 2 (01) : 81 - 89
  • [35] Studies of Cell Growth on TiO2 Nanotubes
    Barudin, Nur Hidayati Ahmad
    Sreekantan, Srimala
    Thong, Ong Ming
    Lay, Lam Kit
    ADVANCED X-RAY CHARACTERIZATION TECHNIQUES, 2013, 620 : 325 - +
  • [36] Controlled Directional Growth of TiO2 Nanotubes
    In, Su-Il
    Hou, Yidong
    Abrams, Billie L.
    Vesborg, Peter C. K.
    Chorkendorff, Ib
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (05) : E69 - E74
  • [37] Charge transport in anodic TiO2 nanotubes studied by terahertz spectroscopy
    Krbal, Milos
    Kucharik, Jiri
    Sopha, Hanna
    Nemec, Hynek
    Macak, Jan M.
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2016, 10 (09): : 691 - 695
  • [38] Preparation of TiO2 nanotubes array on Ti meshes by anodic oxidation
    Wang, X.-Q. (xqwang@mail.neuq.edu.cn), 1600, Chinese Ceramic Society, Baiwanzhuang, Beijing, 100831, China (42):
  • [39] Controlled spacing of self-organized anodic TiO2 nanotubes
    Ozkan, Selda
    Nhat Truong Nguyen
    Mazare, Anca
    Cerri, Isotta
    Schmuki, Patrik
    ELECTROCHEMISTRY COMMUNICATIONS, 2016, 69 : 76 - 79
  • [40] Anodic TiO2 Nanotubes: Tailoring Osteoinduction via Drug Delivery
    Park, Jung
    Cimpean, Anisoara
    Tesler, Alexander B.
    Mazare, Anca
    NANOMATERIALS, 2021, 11 (09)