Modeling the Growth Kinetics of Anodic TiO2 Nanotubes

被引:27
|
作者
Apolinario, A. [1 ,2 ]
Quiterio, P. [1 ,2 ]
Sousa, C. T. [1 ,2 ]
Ventura, J. [1 ,2 ]
Sousa, J. B. [1 ,2 ]
Andrade, L. [3 ]
Mendes, A. M. [3 ]
Araujo, J. P. [1 ,2 ]
机构
[1] Univ Porto, Fac Ciencias, IFIMUP, P-4169007 Oporto, Portugal
[2] Univ Porto, Fac Ciencias, IN Inst Nanosci & Nanotechnol, Dep Fis & Astron, P-4169007 Oporto, Portugal
[3] Fac Engn, LEPABE Lab Proc Engn Environm Biotechnol & Energy, Dept Engn Quim, P-4200465 Oporto, Portugal
来源
关键词
POROUS ALUMINA; FABRICATION; ANODIZATION; ARRAYS; TITANIUM;
D O I
10.1021/jz502380b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The fundamental understanding of the barrier layer (delta(b)) growth in TiO2 nanotubes (NTs) is here established and compared with the classical metal oxidation theory from Mott and Cabrera. The role of delta(b) in the anodization of TiO2 NTs under different applied potentials and times was analyzed using scanning transmission electron microscopy (STEM). Contrary to the well-known case of anodic aluminum oxide, we found that delta(b) of TiO2 NTs progressively grows over time due to the nonsteady anodization regime. We then establish a relation between the phenomenological growth of the barrier layer with time and applied voltage, delta(b)(V,t) using the high-field Mott and Cabrera conduction theory. The developed model was found to be in excellent agreement with the experimental data from both STEM and anodization curves. On the basis of these results, the relationship between delta(b) and the anodization time and potential can now be quantitatively understood.
引用
收藏
页码:845 / 851
页数:7
相关论文
共 50 条
  • [1] Hydroxyapatite growth on anodic TiO2 nanotubes
    Tsuchiya, Hiroaki
    Macak, Jan M.
    Mueller, Lenka
    Kunze, Julia
    Mueller, Frank
    Greil, Peter
    Virtanen, Sannakaisa
    Schmuki, Patrik
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2006, 77A (03) : 534 - 541
  • [2] Anodic Growth and Biomedical Applications of TiO2 Nanotubes
    Cipriano, Aaron F.
    Miller, Christopher
    Liu, Huinan
    JOURNAL OF BIOMEDICAL NANOTECHNOLOGY, 2014, 10 (10) : 2977 - 3003
  • [3] Smooth anodic TiO2 nanotubes
    Macak, JM
    Tsuchiya, H
    Taveira, L
    Aldabergerova, S
    Schmuki, P
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2005, 44 (45) : 7463 - 7465
  • [4] Anodic growth of self-organized anodic TiO2 nanotubes in viscous electrolytes
    Macak, Jan M.
    Schmuki, Patrik
    ELECTROCHIMICA ACTA, 2006, 52 (03) : 1258 - 1264
  • [5] Real Role of Fluoride Ions in the Growth of Anodic TiO2 Nanotubes
    Zhuang, Yi
    Li, Pengze
    Qin, Liyang
    Zhang, Shaoyu
    Chen, Binye
    Zhu, Yunxuan
    Wang, Bing
    Zhu, Xufei
    JOURNAL OF PHYSICAL CHEMISTRY C, 2024, 128 (13): : 5741 - 5748
  • [6] Anodic Growth of Large-Diameter Multipodal TiO2 Nanotubes
    Mohammadpour, Arash
    Waghmare, Prashant R.
    Mitra, Sushanta K.
    Shankar, Karthik
    ACS NANO, 2010, 4 (12) : 7421 - 7430
  • [7] Crystallinity of Anodic TiO2 Nanotubes and Bioactivity
    An, Sang-Hyun
    Narayanan, Ramaswamy
    Matsumoto, Takuya
    Lee, Hyo-Jin
    Kwon, Tae-Yub
    Kim, Kyo-Han
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2011, 11 (06) : 4910 - 4918
  • [8] Photocatalytic properties of anodic TiO2 nanotubes
    Lee, Jong-Ho
    Choi, Hyung-Seon
    Jeong, Yongsoo
    Chi, Choong-Soo
    Oh, Han-Jun
    ADVANCES IN NANOMATERIALS AND PROCESSING, PTS 1 AND 2, 2007, 124-126 : 771 - +
  • [9] Morphological evolution of anodic TiO2 nanotubes
    Yang, Yiyi
    Li, Yuning
    Pritzker, Mark
    RSC ADVANCES, 2014, 4 (68) : 35833 - 35843
  • [10] Formation mechanism of anodic TiO2 nanotubes
    Shi, Hang
    PROCEEDINGS OF THE 2017 2ND INTERNATIONAL CONFERENCE ON MATERIALS SCIENCE, MACHINERY AND ENERGY ENGINEERING (MSMEE 2017), 2017, 123 : 785 - 788