Modeling the Growth Kinetics of Anodic TiO2 Nanotubes

被引:27
作者
Apolinario, A. [1 ,2 ]
Quiterio, P. [1 ,2 ]
Sousa, C. T. [1 ,2 ]
Ventura, J. [1 ,2 ]
Sousa, J. B. [1 ,2 ]
Andrade, L. [3 ]
Mendes, A. M. [3 ]
Araujo, J. P. [1 ,2 ]
机构
[1] Univ Porto, Fac Ciencias, IFIMUP, P-4169007 Oporto, Portugal
[2] Univ Porto, Fac Ciencias, IN Inst Nanosci & Nanotechnol, Dep Fis & Astron, P-4169007 Oporto, Portugal
[3] Fac Engn, LEPABE Lab Proc Engn Environm Biotechnol & Energy, Dept Engn Quim, P-4200465 Oporto, Portugal
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2015年 / 6卷 / 05期
关键词
POROUS ALUMINA; FABRICATION; ANODIZATION; ARRAYS; TITANIUM;
D O I
10.1021/jz502380b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The fundamental understanding of the barrier layer (delta(b)) growth in TiO2 nanotubes (NTs) is here established and compared with the classical metal oxidation theory from Mott and Cabrera. The role of delta(b) in the anodization of TiO2 NTs under different applied potentials and times was analyzed using scanning transmission electron microscopy (STEM). Contrary to the well-known case of anodic aluminum oxide, we found that delta(b) of TiO2 NTs progressively grows over time due to the nonsteady anodization regime. We then establish a relation between the phenomenological growth of the barrier layer with time and applied voltage, delta(b)(V,t) using the high-field Mott and Cabrera conduction theory. The developed model was found to be in excellent agreement with the experimental data from both STEM and anodization curves. On the basis of these results, the relationship between delta(b) and the anodization time and potential can now be quantitatively understood.
引用
收藏
页码:845 / 851
页数:7
相关论文
共 37 条
  • [1] Tailoring the Ti surface via electropolishing nanopatterning as a route to obtain highly ordered TiO2 nanotubes
    Apolinario, A.
    Sousa, C. T.
    Ventura, J.
    Andrade, L.
    Mendes, A. M.
    Araujo, J. P.
    [J]. NANOTECHNOLOGY, 2014, 25 (48)
  • [2] The role of the Ti surface roughness in the self-ordering of TiO2 nanotubes: a detailed study of the growth mechanism
    Apolinario, A.
    Sousa, C. T.
    Ventura, J.
    Costa, J. D.
    Leitao, D. C.
    Moreira, J. M.
    Sousa, J. B.
    Andrade, L.
    Mendes, A. M.
    Araujo, J. P.
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (24) : 9067 - 9078
  • [3] A lithographic approach to determine volume expansion factors during anodization: Using the example of initiation and growth of TiO2-nanotubes
    Berger, Steffen
    Kunze, Julia
    Schmuki, Patrik
    LeClere, Darren
    Valota, Anna T.
    Skeldon, Peter
    Thompson, George E.
    [J]. ELECTROCHIMICA ACTA, 2009, 54 (24) : 5942 - 5948
  • [4] THEORY OF THE OXIDATION OF METALS
    CABRERA, N
    MOTT, NF
    [J]. REPORTS ON PROGRESS IN PHYSICS, 1948, 12 : 163 - 184
  • [5] The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation
    Cai, QY
    Paulose, M
    Varghese, OK
    Grimes, CA
    [J]. JOURNAL OF MATERIALS RESEARCH, 2005, 20 (01) : 230 - 236
  • [6] Anodization of nanoimprinted titanium:: a comparison with formation of porous alumina
    Choi, JS
    Wehrspohn, RB
    Lee, J
    Gösele, U
    [J]. ELECTROCHIMICA ACTA, 2004, 49 (16) : 2645 - 2652
  • [7] Titanium oxide nanotube arrays prepared by anodic oxidation
    Gong, D
    Grimes, CA
    Varghese, OK
    Hu, WC
    Singh, RS
    Chen, Z
    Dickey, EC
    [J]. JOURNAL OF MATERIALS RESEARCH, 2001, 16 (12) : 3331 - 3334
  • [8] GRATZEL M, 2001, NATURE, V338, P414
  • [9] Hebert KR, 2012, NAT MATER, V11, P162, DOI [10.1038/nmat3185, 10.1038/NMAT3185]
  • [10] Improvement of the photovoltaic performance of solid-state dye-sensitized device by silver complexation of the sensitizer cis-bis(4,4′-dicarboxy-2,2′bipyridine)-bis(isothiocyanato) ruthenium(II)
    Krüger, J
    Plass, R
    Grätzel, M
    Matthieu, HJ
    [J]. APPLIED PHYSICS LETTERS, 2002, 81 (02) : 367 - 369