Extracellular vesicles and atherosclerotic disease

被引:63
作者
Chistiakov, Dimitry A. [1 ,2 ]
Orekhov, Alexander N. [3 ,4 ]
Bobryshev, Yuri V. [5 ,6 ]
机构
[1] Mt Sinai Med Ctr, Mt Sinai Community Clin Oncol Program, Mt Sinai Comprehens Canc Ctr, Miami Beach, FL 33140 USA
[2] Res Ctr Childrens Hlth, Div Lab Med, Dept Mol Genet Diagnost & Cell Biol, Inst Pediat, Moscow 119991, Russia
[3] Russian Acad Sci, Inst Gen Pathol & Pathophysiol, Lab Angiopathol, Moscow 125315, Russia
[4] Moscow MV Lomonosov State Univ, Dept Biophys, Fac Biol, Moscow 119991, Russia
[5] Univ New S Wales, Fac Med, Sch Med Sci, Sydney, NSW 2052, Australia
[6] Univ Western Sydney, Sch Med, Campbelltown, NSW 2560, Australia
关键词
Circulating extracellular vesicles (EVs); Microparticles; Exosomes; Microvesicles; Apoptotic bodies; Atherosclerosis; Atherogenesis; Blood vessels; Circulation; PLATELET-DERIVED MICROPARTICLES; MESENCHYMAL STEM-CELL; TISSUE FACTOR; DENDRITIC CELLS; P-SELECTIN; CIRCULATING MICRORNAS; ENDOTHELIAL-CELLS; IN-VITRO; MEMBRANE-VESICLES; HEART-FAILURE;
D O I
10.1007/s00018-015-1906-2
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Circulating extracellular vesicles (EVs) comprise a heterogeneous population of vesicular structures. According to the current paradigm, there are three types of EVs, including exosomes, microvesicles and apoptotic bodies, that are differentiated in their size, formation, and release mechanisms. EVs were shown to act as a 'post service' that serves a long-distance delivery of complex cellular messages. The cargo of EVs consists of a variety of biomolecules including proteins, DNA, mRNA, and non-coding RNA. In normal or pathological conditions, EVs deliver various molecules to the recipient cells. Those molecules greatly vary depending on the microenvironmental stimuli. In proinflammatory conditions such as atherosclerosis and other cardiovascular diseases, EVs derived from vascular endothelial cells, vascular smooth muscle cells, macrophages, and other circulating immune cells mainly possess proinflammatory properties. However, the capacity of circulating EVs to stably maintain and deliver a variety of biomolecules makes these microparticles to be a promising therapeutic tool for treatment of cardiovascular pathology. To date, circulating EVs were evaluated to be as a source of valuable diagnostic and prognostic biomarkers such as microRNA. Circulating EVs keep a great therapeutic potential to serve as vehicles for targeted therapy of cardiovascular diseases.
引用
收藏
页码:2697 / 2708
页数:12
相关论文
共 111 条
[1]   Sonic hedgehog carried by microparticles corrects endothelial injury through nitric oxide release [J].
Agouni, Abdelali ;
Mostefai, H. Ahmed ;
Porro, Chiarra ;
Carusio, Nunzia ;
Favre, Julie ;
Richard, Vincent ;
Henrion, Daniel ;
Martinez, M. Carmen ;
Andriantsitohaina, Ramaroson .
FASEB JOURNAL, 2007, 21 (11) :2735-2741
[2]   Microvesicle-mediated RNA Molecule Delivery System Using Monocytes/Macrophages [J].
Akao, Yukihiro ;
Iio, Akio ;
Itoh, Tomohiro ;
Noguchi, Shunsuke ;
Itoh, Yuko ;
Ohtsuki, Yoshinori ;
Naoe, Tomoki .
MOLECULAR THERAPY, 2011, 19 (02) :395-399
[3]   Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes [J].
Alvarez-Erviti, Lydia ;
Seow, Yiqi ;
Yin, HaiFang ;
Betts, Corinne ;
Lakhal, Samira ;
Wood, Matthew J. A. .
NATURE BIOTECHNOLOGY, 2011, 29 (04) :341-U179
[4]   Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma [J].
Arroyo, Jason D. ;
Chevillet, John R. ;
Kroh, Evan M. ;
Ruf, Ingrid K. ;
Pritchard, Colin C. ;
Gibson, Donald F. ;
Mitchell, Patrick S. ;
Bennett, Christopher F. ;
Pogosova-Agadjanyan, Era L. ;
Stirewalt, Derek L. ;
Tait, Jonathan F. ;
Tewari, Muneesh .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (12) :5003-5008
[5]   Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury [J].
Arslan, Fatih ;
Lai, Ruenn Chai ;
Smeets, Mirjam B. ;
Akeroyd, Lars ;
Choo, Andre ;
Aguor, Eissa N. E. ;
Timmers, Leo ;
van Rijen, Harold V. ;
Doevendans, Pieter A. ;
Pasterkamp, Gerard ;
Lim, Sai Kiang ;
de Kleijn, Dominique P. .
STEM CELL RESEARCH, 2013, 10 (03) :301-312
[6]   Modulation of monocyte-endothelial cell interactions by platelet microparticles [J].
Barry, OP ;
Praticò, D ;
Savani, RC ;
FitzGerald, GA .
JOURNAL OF CLINICAL INVESTIGATION, 1998, 102 (01) :136-144
[7]   Circulating monocytes mirror the imbalance in TF and TFPI expression in carotid atherosclerotic plaques with lipid-rich and calcified morphology [J].
Basavaraj, Manjunath Goolyam ;
Sovershaev, Mikhail A. ;
Egorina, Elena M. ;
Gruber, Franz X. ;
Bogdanov, Vladimir Y. ;
Fallon, John T. ;
Osterud, Bjarne ;
Mathiesen, Ellisiv B. ;
Hansen, John-Bjarne .
THROMBOSIS RESEARCH, 2012, 129 (04) :E134-E141
[8]   Microparticles Carrying Sonic Hedgehog Favor Neovascularization through the Activation of Nitric Oxide Pathway in Mice [J].
Benameur, Tarek ;
Soleti, Raffaella ;
Porro, Chiara ;
Andriantsitohaina, Ramaroson ;
Martinez, Maria Carmen .
PLOS ONE, 2010, 5 (09) :1-10
[9]   Human cell-derived microparticles promote thrombus formation in vivo in a tissue factor-dependent manner [J].
Biró, É ;
Sturk-Maquelin, KN ;
Vogel, GMT ;
Meuleman, DG ;
Smit, MJ ;
Hack, CE ;
Sturk, A ;
Nieuwland, R .
JOURNAL OF THROMBOSIS AND HAEMOSTASIS, 2003, 1 (12) :2561-2568
[10]   Key transcriptional regulators of the vasoprotective effects of shear stress [J].
Boon, R. A. ;
Horrevoets, A. J. G. .
HAMOSTASEOLOGIE, 2009, 29 (01) :39-+