WENO RECONSTRUCTIONS OF UNCONDITIONALLY OPTIMAL HIGH ORDER

被引:14
作者
Baeza, Antonio [1 ]
Burger, Raimund [2 ,3 ]
Mulet, Pep [1 ]
Zorio, David [2 ]
机构
[1] Univ Valencia, Dept Matemat, Ave Vicent Andres Estelles, E-46100 Burjassot, Spain
[2] Univ Concepcion, CI2MA, Casilla 160-C, Concepcion, Chile
[3] Univ Concepcion, Dept Ingn Matemat, Casilla 160-C, Concepcion, Chile
关键词
finite-difference schemes; WENO reconstructions; optimal order; critical points; ESSENTIALLY NONOSCILLATORY SCHEMES; EFFICIENT IMPLEMENTATION; ACCURACY; FULL;
D O I
10.1137/18M1229900
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A modified weighted essentially nonoscillatory (WENO) reconstruction technique preventing accuracy loss near critical points (regardless of their order) of the underlying data is presented. This approach only uses local data from the reconstruction stencil and does not rely on any sort of scaling parameters. The key novel ingredient is a weight design based on a new smoothness indicator, which defines the first WENO reconstruction procedure that never loses accuracy on smooth data, regardless of the presence of critical points of any order, and is therefore addressed as the optimal WENO (OWENO) method. The corresponding weights are nondimensional and scale-independent. The weight designs are supported by theoretical results concerning the accuracy of the smoothness indicators. The method is validated by numerical tests related to algebraic equations, scalar conservation laws, and systems of conservation laws.
引用
收藏
页码:2760 / 2784
页数:25
相关论文
共 22 条
[1]   Weights Design For Maximal Order WENO Schemes [J].
Arandiga, F. ;
Marti, M. C. ;
Mulet, P. .
JOURNAL OF SCIENTIFIC COMPUTING, 2014, 60 (03) :641-659
[2]   ANALYSIS OF WENO SCHEMES FOR FULL AND GLOBAL ACCURACY [J].
Arandiga, F. ;
Baeza, A. ;
Belda, A. M. ;
Mulet, P. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (02) :893-915
[3]   An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws [J].
Borges, Rafael ;
Carmona, Monique ;
Costa, Bruno ;
Don, Wai Sun .
JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (06) :3191-3211
[4]   High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws [J].
Castro, Marcos ;
Costa, Bruno ;
Don, Wai Sun .
JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (05) :1766-1792
[5]  
Cockburn B., 1998, ADV NUMERICAL APPROX, VVolume 1697, P325, DOI [10.1007/BFb0096355, DOI 10.1007/BFB0096355]
[6]   Accuracy of the weighted essentially non-oscillatory conservative finite difference schemes [J].
Don, Wai-Sun ;
Borges, Rafael .
JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 250 :347-372
[7]   Capturing shock reflections: An improved flux formula [J].
Donat, R ;
Marquina, A .
JOURNAL OF COMPUTATIONAL PHYSICS, 1996, 125 (01) :42-58
[8]   A New Mapped Weighted Essentially Non-oscillatory Scheme [J].
Feng, Hui ;
Hu, Fuxing ;
Wang, Rong .
JOURNAL OF SCIENTIFIC COMPUTING, 2012, 51 (02) :449-473
[9]   Very-high-order WENO schemes [J].
Gerolymos, G. A. ;
Senechal, D. ;
Vallet, I. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (23) :8481-8524
[10]   An improved weighted essentially non-oscillatory scheme with a new smoothness indicator [J].
Ha, Youngsoo ;
Kim, Chang Ho ;
Lee, Yeon Ju ;
Yoon, Jungho .
JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 232 (01) :68-86