Metal/ceramic interface structures and segregation behavior in aluminum-based composites

被引:78
作者
Zhang, Xinming [1 ]
Hu, Tao [1 ]
Rufner, Jorgen F. [1 ]
LaGrange, Thomas B. [2 ]
Campbell, Geoffrey H. [2 ]
Lavernia, Enrique J. [1 ]
Schoenung, Julie M. [1 ]
van Benthem, Klaus [1 ]
机构
[1] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA
[2] Lawrence Livermore Natl Lab, Phys & Life Sci Directory, Livermore, CA 94550 USA
关键词
Aluminum alloy; Transmission electron microscopy; Segregation; Interface; ELECTRON-DIFFRACTION; MECHANICAL-BEHAVIOR; THERMAL-OXIDATION; PRECESSION TECHNIQUE; BORON-CARBIDE; AL; NANOCRYSTALLINE; ALLOY; AMORPHIZATION; DEFORMATION;
D O I
10.1016/j.actamat.2015.05.021
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Trimodal Al alloy (AA) matrix composites consisting of ultrafine-grained (UFG) and coarse-grained (CG) Al phases and micron-sized B4C ceramic reinforcement particles exhibit combinations of strength and ductility that render them useful for potential applications in the aerospace, defense and automotive Industries. Tailoring of microstructures with specific mechanical properties requires a detailed understanding of interfacial structures to enable strong interface bonding between ceramic reinforcement and metal matrix, and thereby allow for effective load transfer. Trimodal AA metal matrix composites typically show three characteristics that are noteworthy: nanocrystalline grains in the vicinity of the B4C reinforcement particles; Mg segregation at AA/B4C interfaces; and the presence of amorphous interfacial layers separating nanocrystalline grains from B4C particles. Interestingly, however, fundamental information related to the mechanisms responsible for these characteristics as well as information on local compositions and phases are absent in the current literature. In this study, we use high-resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy, electron energy-loss spectroscopy, and precession assisted electron diffraction to gain fundamental insight into the mechanisms that affect the characteristics of AA/B4C interfaces. Specifically, we determined interfacial structures, local composition and spatial distribution of the interfacial constituents. Near atomic resolution characterization revealed amorphous multilayers and a nanocrystalline region between Al phase and B4C reinforcement particles. The amorphous layers consist of nonstoichiometric AlxOy, while the nanocrystalline region is comprised of MgO nanograins. The experimental results are discussed in terms of the possible underlying mechanisms at AA/B4C interfaces. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:254 / 263
页数:10
相关论文
共 50 条
[1]   Precession technique and electron diffractometry as new tools for crystal structure analysis and chemical bonding determination [J].
Avilov, A. ;
Kuligin, K. ;
Nicolopoulos, S. ;
Nickolskiy, M. ;
Boulahya, K. ;
Portillo, J. ;
Lepeshov, G. ;
Sobolev, B. ;
Collette, J. P. ;
Martin, N. ;
Robins, A. C. ;
Fischione, P. .
ULTRAMICROSCOPY, 2007, 107 (6-7) :431-444
[2]   Thermodynamic model for solid-state amorphization in binary systems at interfaces and grain boundaries [J].
Benedictus, R ;
Bottger, A ;
Mittemeijer, EJ .
PHYSICAL REVIEW B, 1996, 54 (13) :9109-9125
[3]   Orientation Mapping via Precession-Enhanced Electron Diffraction and Its Applications in Materials Science [J].
Brons, J. G. ;
Thompson, G. B. .
JOM, 2014, 66 (01) :165-170
[4]   Design of Desintering in Tin Dioxide Nanoparticles [J].
Chang, Chi-Hsiu ;
Rufner, Jorgen F. ;
van Benthem, Klaus ;
Castro, Ricardo H. R. .
CHEMISTRY OF MATERIALS, 2013, 25 (21) :4262-4268
[5]   Shock-induced localized amorphization in boron carbide [J].
Chen, MW ;
McCauley, JW ;
Hemker, KJ .
SCIENCE, 2003, 299 (5612) :1563-1566
[6]  
Clyne T.W., 1993, INTRO METAL MATRIX C
[7]  
Cox J. D., 1989, CODATA KEY VALUES TH
[8]   Boron Carbide: Structure, Properties, and Stability under Stress [J].
Domnich, Vladislav ;
Reynaud, Sara ;
Haber, Richard A. ;
Chhowalla, Manish .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2011, 94 (11) :3605-3628
[9]  
Gatan Inc, 2010, GAT EELS ATL
[10]   Structural damage in boron carbide under contact loading [J].
Ge, D ;
Domnich, V ;
Juliano, T ;
Stach, EA ;
Gogotsi, Y .
ACTA MATERIALIA, 2004, 52 (13) :3921-3927