Increasing efficiency of perovskite solar cells using low concentrating photovoltaic systems

被引:77
作者
Baig, Hasan [1 ]
Kanda, Hiroyuki [2 ]
Asiri, Abdullah M. [3 ]
Nazeeruddin, Mohammad Khaja [2 ]
Mallick, Tapas [1 ]
机构
[1] Univ Exeter, Environm & Sustainabil Inst, Penryn TR10 9FE, England
[2] Ecole Polytech Fed Lausanne, Grp Mol Engn Funct Mat, Inst Chem Sci & Engn, CH-1951 Sion, Switzerland
[3] King Abdulaziz Univ, CEAMR, POB 80203, Jeddah 21589, Saudi Arabia
基金
英国工程与自然科学研究理事会;
关键词
HALIDE PEROVSKITES; PERFORMANCE;
D O I
10.1039/c9se00550a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Perovskite solar cell (PSC) technology is the flag bearer for the future of photovoltaics allowing unlimited possibilities for its application. This technology is currently limited by issues related to its scale-up, stability and the composition of the materials used in its preparation. Using small sized solar cells with higher efficiency under solar concentration is gaining traction as a methodology for scaling up this technology and broadening its applications. However, this has only been reported in devices with size <1 mm2 neglecting the series resistance of the device. Here, we report the performance of a 9 mm(2) PSC at varying solar concentration levels and correlate it with the series resistance of the solar cell. The n-i-p structured device using a triple cation perovskite absorber with a mesoporous titanium oxide/SnO2 layer as the electron transporting layer and Spiro-OMeTAD as the hole transporting material achieved a peak efficiency of 21.6% under 1.78 Suns as compared to the 21% obtained under 1 Sun (1000W m(-2)) and AM1.5G. We further boosted the power output up to 15.88 mW under 10.7 Suns compared to the 1.88 mW obtained under 1 Sun; however this results in an actual efficiency drop of the PSC owing to the device series resistance. Further, we investigated the impact of the increasing solar cell temperature at higher concentration levels and identified the influence of series resistance on the performance of the PSC. Our work identifies the potential of concentrating photovoltaics and highlights the challenges and makes recommendations for future development.
引用
收藏
页码:528 / 537
页数:10
相关论文
共 28 条
[1]   Perovskite Solar Cells: Influence of Hole Transporting Materials on Power Conversion Efficiency [J].
Ameen, Sadia ;
Rub, Malik Abdul ;
Kosa, Samia A. ;
Alamry, Khalid A. ;
Akhtar, M. Shaheer ;
Shin, Hyung-Shik ;
Seo, Hyung-Kee ;
Asiri, Abdullah M. ;
Nazeeruddin, Mohammad Khaja .
CHEMSUSCHEM, 2016, 9 (01) :10-27
[2]   Frontiers, opportunities, and challenges in perovskite solar cells: A critical review [J].
Ansari, Mohammed Istafaul Haque ;
Qurashi, Ahsanulhaq ;
Nazeeruddin, Mohammad Khaja .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS, 2018, 35 :1-24
[3]   Numerical modelling and experimental validation of a low concentrating photovoltaic system [J].
Baig, Hasan ;
Sarmah, Nabin ;
Heasman, Keith C. ;
Mallick, Tapas K. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2013, 113 :201-219
[4]   Non-uniform illumination in concentrating solar cells [J].
Baig, Hasan ;
Heasman, Keith C. ;
Mallick, Tapas K. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2012, 16 (08) :5890-5909
[5]   Integrated thinking for photovoltaics in buildings [J].
Ballif, Christophe ;
Perret-Aebi, Laure-Emmanuelle ;
Lufkin, Sophie ;
Rey, Emmanuel .
NATURE ENERGY, 2018, 3 (06) :438-442
[6]   Charge Transfer Dynamics from Organometal Halide Perovskite to Polymeric Hole Transport Materials in Hybrid Solar Cells [J].
Brauer, Jan C. ;
Lee, Yong Hui ;
Nazeeruddin, Mohammad Khaja ;
Banerji, Natalie .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2015, 6 (18) :3675-3681
[7]   Sequential deposition as a route to high-performance perovskite-sensitized solar cells [J].
Burschka, Julian ;
Pellet, Norman ;
Moon, Soo-Jin ;
Humphry-Baker, Robin ;
Gao, Peng ;
Nazeeruddin, Mohammad K. ;
Graetzel, Michael .
NATURE, 2013, 499 (7458) :316-+
[8]   Design and understanding of encapsulated perovskite solar cells to withstand temperature cycling [J].
Cheacharoen, Rongrong ;
Rolston, Nicholas ;
Harwood, Duncan ;
Bush, Kevin A. ;
Dauskardt, Reinhold H. ;
McGehee, Michael D. .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (01) :144-150
[9]   Selective growth of layered perovskites for stable and efficient photovoltaics [J].
Cho, Kyung Taek ;
Grancini, Giulia ;
Lee, Yonghui ;
Oveisi, Emad ;
Ryu, Jaehoon ;
Almora, Osbel ;
Tschumi, Manuel ;
Schouwink, Pascal Alexander ;
Seo, Gabseok ;
Heo, Sung ;
Park, Jucheol ;
Jang, Jyongsik ;
Paek, Sanghyun ;
Garcia-Belmonte, Germa ;
Nazeeruddin, Mohammad Khaja .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (04) :952-959
[10]   Highly efficient perovskite solar cells with a compositionally engineered perovskite/hole transporting material interface [J].
Cho, Kyung Taek ;
Paek, Sanghyun ;
Grancini, Giulia ;
Roldan-Carmona, Cristina ;
Gao, Peng ;
Lee, Yonghui ;
Nazeeruddin, Mohammad Khaja .
ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (02) :621-627